IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924008166.html
   My bibliography  Save this article

Impact of positive and negative information on epidemic spread in a three-layer network

Author

Listed:
  • Han, Dun
  • Wang, Xin

Abstract

In this paper, we introduce an epidemic model based on a three-layer network, which includes the mass media layer, the information layer, and the epidemic layer, to explore the impact of positive and negative information on epidemic spreading. The mass media layer comprises two distinct categories of mass media. The information layer classifies individuals as U state, A1 state and A2 state. The epidemic layer follows the SIS paradigm. We applied the microscopic Markov chain approach to characterize the epidemic threshold. We use threshold models to depict individuals connecting to different mass media at different times. Our results indicate that threshold models significantly affect the final scale of epidemics and the proportion of individuals in different awareness states, with the threshold having a two-stage effect on epidemic spread. Interestingly, our research found that promoting the spread of negative news about diseases while suppressing positive news can control the outbreak and spread of epidemics, differing from previous findings. Our study also found that promoting the dissemination of negative news about diseases is more effective in suppressing epidemic spread than promoting positive information. Finally, our analysis suggests that measures such as reducing individuals’ forgetting rates of epidemic information and improving recovery rates can effectively suppress epidemic outbreaks and spread.

Suggested Citation

  • Han, Dun & Wang, Xin, 2024. "Impact of positive and negative information on epidemic spread in a three-layer network," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008166
    DOI: 10.1016/j.chaos.2024.115264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924008166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Dayu & Liu, Ying & Tang, Ming & Xu, Xiao-Ke & Guan, Shuguang, 2022. "Impact of hopping characteristics of inter-layer commuters on epidemic spreading in multilayer networks," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Ping Huang & Xiao-Long Chen & Ming Tang & Shi-Min Cai & Ye Wu, 2021. "Coupled Dynamic Model of Resource Diffusion and Epidemic Spreading in Time-Varying Multiplex Networks," Complexity, Hindawi, vol. 2021, pages 1-11, March.
    3. Sun, Qingyi & Wang, Zhishuang & Zhao, Dawei & Xia, Chengyi & Perc, Matjaž, 2022. "Diffusion of resources and their impact on epidemic spreading in multilayer networks with simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Wang, Huan & Ma, Chuang & Chen, Han-Shuang & Zhang, Hai-Feng, 2021. "Effects of asymptomatic infection and self-initiated awareness on the coupled disease-awareness dynamics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    5. Paolo Bajardi & Chiara Poletto & Jose J Ramasco & Michele Tizzoni & Vittoria Colizza & Alessandro Vespignani, 2011. "Human Mobility Networks, Travel Restrictions, and the Global Spread of 2009 H1N1 Pandemic," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    6. Jia, Mengqi & Li, Xin & Ding, Li, 2021. "Epidemic spreading with awareness on multi-layer activity-driven networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Wang & Zhiping Wang & Ping Yu & Peiwen Wang, 2022. "The SEIR Dynamic Evolutionary Model with Markov Chains in Hyper Networks," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    2. Guo, Yifei & Tu, Lilan & Wang, Xianjia, 2024. "The coupled dynamics of awareness and disease: Based on the adaptive mechanism and the surroundings reinforcement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    3. Li, Shumei & Yang, Chun & Yao, Zhiwen, 2024. "Simplicial epidemic model with individual resource," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 647(C).
    4. You, Xuemei & Fan, Xiaonan & Ma, Yinghong & Liu, Zhiyuan & Zhang, Ruifeng, 2024. "Impact of message fatigue in information-disease coupled dynamics on temporal simplicial networks," Applied Mathematics and Computation, Elsevier, vol. 479(C).
    5. Hakan Yilmazkuday, 2021. "Welfare costs of COVID‐19: Evidence from US counties," Journal of Regional Science, Wiley Blackwell, vol. 61(4), pages 826-848, September.
    6. Wang, Weihong & Chen, MingMing & Min, Yong & Jin, Xiaogang, 2016. "Structural diversity effects of multilayer networks on the threshold of interacting epidemics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 254-262.
    7. Michele Coscia & Ricardo Hausmann, 2015. "Evidence That Calls-Based and Mobility Networks Are Isomorphic," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-15, December.
    8. Hartwell, Christopher A., 2021. "What Drove the First Response to the COVID-19 Pandemic? The Role of Institutions and Leader Attributes," MPRA Paper 110563, University Library of Munich, Germany.
    9. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    10. Xiaoyan Mu & Anthony Gar-On Yeh & Xiaohu Zhang, 2021. "The interplay of spatial spread of COVID-19 and human mobility in the urban system of China during the Chinese New Year," Environment and Planning B, , vol. 48(7), pages 1955-1971, September.
    11. Panayotis Christidis & Aris Christodoulou, 2020. "The Predictive Capacity of Air Travel Patterns during the Global Spread of the COVID-19 Pandemic: Risk, Uncertainty and Randomness," IJERPH, MDPI, vol. 17(10), pages 1-15, May.
    12. Jürgen Hackl & Thibaut Dubernet, 2019. "Epidemic Spreading in Urban Areas Using Agent-Based Transportation Models," Future Internet, MDPI, vol. 11(4), pages 1-14, April.
    13. Wang, Wenjun & Pan, Lin & Yuan, Ning & Zhang, Sen & Liu, Dong, 2015. "A comparative analysis of intra-city human mobility by taxi," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 134-147.
    14. Chen, Yahong & Huang, He, 2022. "Modeling the impacts of contact tracing on an epidemic with asymptomatic infection," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    15. Sheng Wei & Lei Wang, 2020. "Examining the population flow network in China and its implications for epidemic control based on Baidu migration data," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-10, December.
    16. Mattia Mazzoli & Riccardo Gallotti & Filippo Privitera & Pere Colet & José J. Ramasco, 2023. "Spatial immunization to abate disease spreading in transportation hubs," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Thombre, Anurag & Agarwal, Amit, 2021. "A paradigm shift in urban mobility: Policy insights from travel before and after COVID-19 to seize the opportunity," Transport Policy, Elsevier, vol. 110(C), pages 335-353.
    18. Daniela Calvetti & Alexander P. Hoover & Johnie Rose & Erkki Somersalo, 2021. "Modeling Epidemic Spread among a Commuting Population Using Transport Schemes," Mathematics, MDPI, vol. 9(16), pages 1-26, August.
    19. Krishnagopal, Sanjukta & Bianconi, Ginestra, 2023. "Topology and dynamics of higher-order multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    20. Gregory Price & Eric van Holm, 2021. "The Effect of Social Distancing on the Early Spread of the Novel Coronavirus," Social Science Quarterly, Southwestern Social Science Association, vol. 102(5), pages 2331-2340, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.