IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v10y2022i6p113-d827698.html
   My bibliography  Save this article

Estimating Copula-Based Extension of Tail Value-at-Risk and Its Application in Insurance Claim

Author

Listed:
  • Khreshna Syuhada

    (Statistics Research Division, Institut Teknologi Bandung, Bandung 40132, Indonesia)

  • Oki Neswan

    (Analysis and Geometry Research Division, Institut Teknologi Bandung, Bandung 40132, Indonesia)

  • Bony Parulian Josaphat

    (Statistics Research Division, Institut Teknologi Bandung, Bandung 40132, Indonesia)

Abstract

Dependent Tail Value-at-Risk, abbreviated as DTVaR, is a copula-based extension of Tail Value-at-Risk (TVaR). This risk measure is an expectation of a target loss once the loss and its associated loss are above their respective quantiles but bounded above by their respective larger quantiles. In this paper, we propose nonparametric estimators for DTVaR and establish their property of consistency. Moreover, we also propose the variability measure around this expected value truncated by the quantiles, called the Dependent Conditional Tail Variance (DCTV). We use this measure for constructing confidence intervals of the DTVaR. Both parametric and nonparametric approaches for DTVaR estimations are explored. Furthermore, we assess the performance of DTVaR estimations using a proposed backtest based on the DCTV. As for the numerical study, we take an application in the insurance claim amount.

Suggested Citation

  • Khreshna Syuhada & Oki Neswan & Bony Parulian Josaphat, 2022. "Estimating Copula-Based Extension of Tail Value-at-Risk and Its Application in Insurance Claim," Risks, MDPI, vol. 10(6), pages 1-26, May.
  • Handle: RePEc:gam:jrisks:v:10:y:2022:i:6:p:113-:d:827698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/10/6/113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/10/6/113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2015. "A comparison of Expected Shortfall estimation models," Journal of Economics and Business, Elsevier, vol. 78(C), pages 14-47.
    2. Roba Bairakdar & Lu Cao & Melina Mailhot, 2020. "Range Value-at-Risk: Multivariate and Extreme Values," Papers 2005.12473, arXiv.org.
    3. Jonathan El Methni & Laurent Gardes & Stéphane Girard, 2014. "Non-parametric Estimation of Extreme Risk Measures from Conditional Heavy-tailed Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 988-1012, December.
    4. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    5. Wang, Ruodu & Wei, Yunran, 2020. "Characterizing optimal allocations in quantile-based risk sharing," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 288-300.
    6. Heuchenne, Cedric & Laurent, Geraldine, 2014. "Parametric conditional variance estimation in location-scale models with censored data," LIDAM Discussion Papers ISBA 2014051, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goegebeur, Yuri & Guillou, Armelle & Qin, Jing, 2024. "Dependent conditional tail expectation for extreme levels," Stochastic Processes and their Applications, Elsevier, vol. 171(C).
    2. Jinyu Zhou & Jigao Yan & Dongya Cheng, 2024. "Strong consistency of tail value-at-risk estimator and corresponding general results under widely orthant dependent samples," Statistical Papers, Springer, vol. 65(6), pages 3357-3394, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Inference for extremal regression with dependent heavy-tailed data," TSE Working Papers 22-1324, Toulouse School of Economics (TSE), revised 29 Aug 2023.
    2. Fracasso, Laís Martins & Müller, Fernanda Maria & Ramos, Henrique Pinto & Righi, Marcelo Brutti, 2023. "Is there a risk premium? Evidence from thirteen measures," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 182-199.
    3. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    4. Marcelo Brutti Righi, 2019. "A composition between risk and deviation measures," Annals of Operations Research, Springer, vol. 282(1), pages 299-313, November.
    5. Mohammed Berkhouch & Fernanda Maria Müller & Ghizlane Lakhnati & Marcelo Brutti Righi, 2022. "Deviation-Based Model Risk Measures," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 527-547, February.
    6. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2021. "Systemic-systematic risk in financial system: A dynamic ranking based on expectiles," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 330-365.
    7. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    8. Fernanda Maria Müller & Thalles Weber Gössling & Samuel Solgon Santos & Marcelo Brutti Righi, 2024. "A comparison of Range Value at Risk (RVaR) forecasting models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 509-543, April.
    9. Yiting Fan & Rui Fang, 2022. "Some Results on Measures of Interaction among Risks," Mathematics, MDPI, vol. 10(19), pages 1-19, October.
    10. Yan Fang & Jian Li & Yinglin Liu & Yunfan Zhao, 2023. "Semiparametric estimation of expected shortfall and its application in finance," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 835-851, July.
    11. Baishuai Zuo & Chuancun Yin & Jing Yao, 2023. "Multivariate range Value-at-Risk and covariance risk measures for elliptical and log-elliptical distributions," Papers 2305.09097, arXiv.org.
    12. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2021. "ExpectHill estimation, extreme risk and heavy tails," Journal of Econometrics, Elsevier, vol. 221(1), pages 97-117.
    13. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2024. "Forecasting the effect of extreme sea-level rise on financial market risk," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 1-27.
    14. Peng Liu & Andreas Tsanakas & Yunran Wei, 2024. "Risk sharing with Lambda value at risk under heterogeneous beliefs," Papers 2408.03147, arXiv.org, revised Sep 2024.
    15. Zou, Zhenfeng & Wu, Qinyu & Xia, Zichao & Hu, Taizhong, 2023. "Adjusted Rényi entropic Value-at-Risk," European Journal of Operational Research, Elsevier, vol. 306(1), pages 255-268.
    16. Müller, Fernanda Maria & Santos, Samuel Solgon & Gössling, Thalles Weber & Righi, Marcelo Brutti, 2022. "Comparison of risk forecasts for cryptocurrencies: A focus on Range Value at Risk," Finance Research Letters, Elsevier, vol. 48(C).
    17. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2023. "Nonparametric estimation of conditional marginal excess moments," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    18. Foguesatto, Cristian Rogério & Righi, Marcelo Brutti & Müller, Fernanda Maria, 2024. "Is there a dark side to financial inclusion? Understanding the relationship between financial inclusion and market risk," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    19. Girard, Stéphane & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Functional estimation of extreme conditional expectiles," Econometrics and Statistics, Elsevier, vol. 21(C), pages 131-158.
    20. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2023. "A Weissman-type estimator of the conditional marginal expected shortfall," Econometrics and Statistics, Elsevier, vol. 27(C), pages 173-196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:6:p:113-:d:827698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.