IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v252y2015icp347-353.html
   My bibliography  Save this article

A variant of Steffensen–King’s type family with accelerated sixth-order convergence and high efficiency index: Dynamic study and approach

Author

Listed:
  • Lotfi, T.
  • Magreñán, Á.A.
  • Mahdiani, K.
  • Javier Rainer, J.

Abstract

First, it is attempted to derive an optimal derivative-free Steffensen–King’s type family without memory for computing a simple zero of a nonlinear function with efficiency index 41/3≈1.587. Next, since our without memory family includes a parameter in which it is still possible to increase the convergence order without any new function evaluations. Therefore, we extract a new method with memory so that the convergence order rises to six without any new function evaluation and therefore reaches efficiency index 61/3≈1.817. Consequently, derivative-free and high efficiency index would be the substantial contributions of this work as opposed to the classical Steffensen’s and King’s methods. Finally, we compare some of the convergence planes with different weight functions in order to show which are the best ones.

Suggested Citation

  • Lotfi, T. & Magreñán, Á.A. & Mahdiani, K. & Javier Rainer, J., 2015. "A variant of Steffensen–King’s type family with accelerated sixth-order convergence and high efficiency index: Dynamic study and approach," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 347-353.
  • Handle: RePEc:eee:apmaco:v:252:y:2015:i:c:p:347-353
    DOI: 10.1016/j.amc.2014.12.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314016877
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.12.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramandeep Behl & Sonia Bhalla & Ángel Alberto Magreñán & Alejandro Moysi, 2021. "An Optimal Derivative Free Family of Chebyshev–Halley’s Method for Multiple Zeros," Mathematics, MDPI, vol. 9(5), pages 1-19, March.
    2. Cristina Amorós & Ioannis K. Argyros & Daniel González & Ángel Alberto Magreñán & Samundra Regmi & Íñigo Sarría, 2020. "New Improvement of the Domain of Parameters for Newton’s Method," Mathematics, MDPI, vol. 8(1), pages 1-12, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:252:y:2015:i:c:p:347-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.