IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i5p505-d508246.html
   My bibliography  Save this article

Multivariate INAR(1) Regression Models Based on the Sarmanov Distribution

Author

Listed:
  • Lluís Bermúdez

    (Departament de Matemàtica Econòmica, Financera i Actuarial, Riskcenter-IREA, University of Barcelona, Av. Diagonal, 690, 08034 Barcelona, Spain
    These authors contributed equally to this work.)

  • Dimitris Karlis

    (Department of Statistics, Athens University of Economics and Business, 2, Troias, Kimolou & Spetson Str., 113 62 Athens, Greece
    These authors contributed equally to this work.)

Abstract

A multivariate INAR(1) regression model based on the Sarmanov distribution is proposed for modelling claim counts from an automobile insurance contract with different types of coverage. The correlation between claims from different coverage types is considered jointly with the serial correlation between the observations of the same policyholder observed over time. Several models based on the multivariate Sarmanov distribution are analyzed. The new models offer some advantages since they have all the advantages of the MINAR(1) regression model but allow for a more flexible dependence structure by using the Sarmanov distribution. Driven by a real panel data set, these models are considered and fitted to the data to discuss their goodness of fit and computational efficiency.

Suggested Citation

  • Lluís Bermúdez & Dimitris Karlis, 2021. "Multivariate INAR(1) Regression Models Based on the Sarmanov Distribution," Mathematics, MDPI, vol. 9(5), pages 1-13, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:505-:d:508246
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/5/505/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/5/505/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vernic, Raluca, 2018. "On the evaluation of some multivariate compound distributions with Sarmanov’s counting distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 184-193.
    2. Liu, Feng & Pitt, David, 2017. "Application of bivariate negative binomial regression model in analysing insurance count data," Annals of Actuarial Science, Cambridge University Press, vol. 11(2), pages 390-411, September.
    3. Vera Hofer & Johannes Leitner, 2012. "A bivariate Sarmanov regression model for count data with generalised Poisson marginals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(12), pages 2599-2617, August.
    4. Felix Famoye, 2010. "A new bivariate generalized Poisson distribution," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(1), pages 112-124, February.
    5. José Rodríguez-Lallena & Manuel Úbeda-Flores, 2010. "Multivariate copulas with quadratic sections in one variable," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(3), pages 331-349, November.
    6. Bolancé, Catalina & Vernic, Raluca, 2019. "Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 89-103.
    7. Pedeli, Xanthi & Karlis, Dimitris, 2013. "Some properties of multivariate INAR(1) processes," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 213-225.
    8. Felix Famoye, 2015. "A Multivariate Generalized Poisson Regression Model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(3), pages 497-511, February.
    9. Felix Famoye, 2019. "Bivariate exponentiated‐exponential geometric regression model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 73(3), pages 434-450, August.
    10. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
    11. Gómez-Déniz, Emilio & Sarabia, José María & Balakrishnan, N., 2012. "A Multivariate Discrete Poisson-Lindley Distribution: Extensions and Actuarial Applications," ASTIN Bulletin, Cambridge University Press, vol. 42(2), pages 655-678, November.
    12. Miravete, Eugenio, 2009. "Multivariate Sarmanov Count Data Models," CEPR Discussion Papers 7463, C.E.P.R. Discussion Papers.
    13. Bermúdez, Lluís & Guillén, Montserrat & Karlis, Dimitris, 2018. "Allowing for time and cross dependence assumptions between claim counts in ratemaking models," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 161-169.
    14. Yan Cui & Fukang Zhu, 2018. "A new bivariate integer-valued GARCH model allowing for negative cross-correlation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 428-452, June.
    15. Felix Famoye, 2010. "On the bivariate negative binomial regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(6), pages 969-981.
    16. Bermúdez, Lluís & Karlis, Dimitris, 2011. "Bayesian multivariate Poisson models for insurance ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 226-236, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zezhun Chen & Angelos Dassios & George Tzougas, 2023. "Multivariate mixed Poisson Generalized Inverse Gaussian INAR(1) regression," Computational Statistics, Springer, vol. 38(2), pages 955-977, June.
    2. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2024. "EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects," LSE Research Online Documents on Economics 118826, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Tzougas & Despoina Makariou, 2022. "The multivariate Poisson‐Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(4), pages 401-417, December.
    2. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    3. Zezhun Chen & Angelos Dassios & George Tzougas, 2023. "Multivariate mixed Poisson Generalized Inverse Gaussian INAR(1) regression," Computational Statistics, Springer, vol. 38(2), pages 955-977, June.
    4. Bermúdez, Lluís & Guillén, Montserrat & Karlis, Dimitris, 2018. "Allowing for time and cross dependence assumptions between claim counts in ratemaking models," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 161-169.
    5. Luiza S. C. Piancastelli & Wagner Barreto‐Souza & Hernando Ombao, 2023. "Flexible bivariate INGARCH process with a broad range of contemporaneous correlation," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(2), pages 206-222, March.
    6. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2024. "EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects," LSE Research Online Documents on Economics 118826, London School of Economics and Political Science, LSE Library.
    7. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    8. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
    9. Sarni Maniar Berliana & Purhadi & Sutikno & Santi Puteri Rahayu, 2020. "Parameter Estimation and Hypothesis Testing of Geographically Weighted Multivariate Generalized Poisson Regression," Mathematics, MDPI, vol. 8(9), pages 1-14, September.
    10. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    11. Jacek Osiewalski & Jerzy Marzec, 2019. "Joint modelling of two count variables when one of them can be degenerate," Computational Statistics, Springer, vol. 34(1), pages 153-171, March.
    12. Darolles, Serge & Fol, Gaëlle Le & Lu, Yang & Sun, Ran, 2019. "Bivariate integer-autoregressive process with an application to mutual fund flows," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 181-203.
    13. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2019. "Home and Motor insurance joined at a household level using multivariate credibility," LIDAM Discussion Papers ISBA 2019013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Lluís Bermúdez & Dimitris Karlis, 2022. "Copula-based bivariate finite mixture regression models with an application for insurance claim count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1082-1099, December.
    15. Su Pei-Fang & Mau Yu-Lin & Guo Yan & Li Chung-I & Liu Qi & Boice John D. & Shyr Yu, 2017. "Bivariate Poisson models with varying offsets: an application to the paired mitochondrial DNA dataset," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(1), pages 47-58, March.
    16. Khouzeima Moutanabbir & Hassan Abdelrahman, 2022. "Bivariate Sarmanov Phase-Type Distributions for Joint Lifetimes Modeling," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1093-1118, June.
    17. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2018. "Multivariate Modelling of Multiple Guarantees in Motor Insurance of a Household," LIDAM Discussion Papers ISBA 2018019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2021. "Goodness–of–Fit Tests for Bivariate Time Series of Counts," Econometrics, MDPI, vol. 9(1), pages 1-20, March.
    19. Tzougas, George & di Cerchiara, Alice Pignatelli, 2021. "Bivariate mixed Poisson regression models with varying dispersion," LSE Research Online Documents on Economics 114327, London School of Economics and Political Science, LSE Library.
    20. Friday Ikechukwu Agu & Joseph Thomas Eghwerido, 2021. "Agu-Eghwerido distribution, regression model and applications," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 59-76, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:505-:d:508246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.