IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v44y2015i3p497-511.html
   My bibliography  Save this article

A Multivariate Generalized Poisson Regression Model

Author

Listed:
  • Felix Famoye

Abstract

A multivariate generalized Poisson regression model based on the multivariate generalized Poisson distribution is defined and studied. The regression model can be used to describe a count data with any type of dispersion. The model allows for both positive and negative correlation between any pair of the response variables. The parameters of the regression model are estimated by using the maximum likelihood method. Some test statistics are discussed, and two numerical data sets are used to illustrate the applications of the multivariate count data regression model.

Suggested Citation

  • Felix Famoye, 2015. "A Multivariate Generalized Poisson Regression Model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(3), pages 497-511, February.
  • Handle: RePEc:taf:lstaxx:v:44:y:2015:i:3:p:497-511
    DOI: 10.1080/03610926.2012.743565
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2012.743565
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2012.743565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rolf Larsson, 2020. "Discrete factor analysis using a dependent Poisson model," Computational Statistics, Springer, vol. 35(3), pages 1133-1152, September.
    2. Purhadi & Sutikno & Sarni Maniar Berliana & Dewi Indra Setiawan, 2021. "Geographically weighted bivariate generalized Poisson regression: application to infant and maternal mortality data," Letters in Spatial and Resource Sciences, Springer, vol. 14(1), pages 79-99, April.
    3. Carallo, Giulia & Casarin, Roberto & Robert, Christian P., 2024. "Generalized Poisson difference autoregressive processes," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1359-1390.
    4. Sarni Maniar Berliana & Purhadi & Sutikno & Santi Puteri Rahayu, 2020. "Parameter Estimation and Hypothesis Testing of Geographically Weighted Multivariate Generalized Poisson Regression," Mathematics, MDPI, vol. 8(9), pages 1-14, September.
    5. Lluís Bermúdez & Dimitris Karlis, 2021. "Multivariate INAR(1) Regression Models Based on the Sarmanov Distribution," Mathematics, MDPI, vol. 9(5), pages 1-13, March.
    6. Ousmane Diao & P.-A. Absil & Mouhamadou Diallo, 2023. "Generalized Linear Models to Forecast Malaria Incidence in Three Endemic Regions of Senegal," IJERPH, MDPI, vol. 20(13), pages 1-27, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:44:y:2015:i:3:p:497-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.