IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v31y2022i4d10.1007_s11749-022-00814-1.html
   My bibliography  Save this article

Copula-based bivariate finite mixture regression models with an application for insurance claim count data

Author

Listed:
  • Lluís Bermúdez

    (Financera i Actuarial, RISKcenter-IREA, Universitat de Barcelona (UB))

  • Dimitris Karlis

    (Athens University of Economics and Business)

Abstract

Modeling bivariate (or multivariate) count data has received increased interest in recent years. The aim is to model the number of different but correlated counts taking into account covariate information. Bivariate Poisson regression models based on the shock model approach are widely used because of their simple form and interpretation. However, these models do not allow for overdispersion or negative correlation, and thus, other models have been proposed in the literature to avoid these limitations. The present paper proposes copula-based bivariate finite mixture of regression models. These models offer some advantages since they have all the benefits of a finite mixture, allowing for unobserved heterogeneity and clustering effects, while the copula-based derivation can produce more flexible structures, including negative correlations and regressors. In this paper, the new approach is defined, estimation through an EM algorithm is presented, and then different models are applied to a Spanish insurance claim count database.

Suggested Citation

  • Lluís Bermúdez & Dimitris Karlis, 2022. "Copula-based bivariate finite mixture regression models with an application for insurance claim count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1082-1099, December.
  • Handle: RePEc:spr:testjl:v:31:y:2022:i:4:d:10.1007_s11749-022-00814-1
    DOI: 10.1007/s11749-022-00814-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-022-00814-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-022-00814-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Peng & Valdez, Emiliano A., 2014. "Multivariate negative binomial models for insurance claim counts," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 18-29.
    2. Papastamoulis, Panagiotis & Martin-Magniette, Marie-Laure & Maugis-Rabusseau, Cathy, 2016. "On the estimation of mixtures of Poisson regression models with large number of components," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 97-106.
    3. Anastasios Panagiotelis & Claudia Czado & Harry Joe, 2012. "Pair Copula Constructions for Multivariate Discrete Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1063-1072, September.
    4. Murat K. Munkin & Pravin K. Trivedi, 1999. "Simulated maximum likelihood estimation of multivariate mixed-Poisson regression models, with application," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 29-48.
    5. A. Colin Cameron & Tong Li & Pravin K. Trivedi & David M. Zimmer, 2004. "Modelling the differences in counted outcomes using bivariate copula models with application to mismeasured counts," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 566-584, December.
    6. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    7. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
    8. Genest, Christian & Mesfioui, Mhamed & Schulz, Juliana, 2018. "A new bivariate Poisson common shock model covering all possible degrees of dependence," Statistics & Probability Letters, Elsevier, vol. 140(C), pages 202-209.
    9. Hossein Zamani & Pouya Faroughi & Noriszura Ismail, 2016. "Bivariate generalized Poisson regression model: applications on health care data," Empirical Economics, Springer, vol. 51(4), pages 1607-1621, December.
    10. Gurmu, Shiferaw & Elder, John, 2000. "Generalized bivariate count data regression models," Economics Letters, Elsevier, vol. 68(1), pages 31-36, July.
    11. Peter Berkhout & Erik Plug, 2004. "A bivariate Poisson count data model using conditional probabilities," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(3), pages 349-364, August.
    12. Felix Famoye, 2010. "On the bivariate negative binomial regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(6), pages 969-981.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    2. George Tzougas & Despoina Makariou, 2022. "The multivariate Poisson‐Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(4), pages 401-417, December.
    3. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    4. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2024. "EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects," LSE Research Online Documents on Economics 118826, London School of Economics and Political Science, LSE Library.
    5. Mauro Laudicella & Paolo Li Donni, 2022. "The dynamic interdependence in the demand of primary and emergency secondary care: A hidden Markov approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 521-536, April.
    6. Tzougas, George & di Cerchiara, Alice Pignatelli, 2021. "Bivariate mixed Poisson regression models with varying dispersion," LSE Research Online Documents on Economics 114327, London School of Economics and Political Science, LSE Library.
    7. Mothafer, Ghasak I.M.A. & Yamamoto, Toshiyuki & Shankar, Venkataraman N., 2018. "A multivariate heterogeneous-dispersion count model for asymmetric interdependent freeway crash types," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 84-105.
    8. Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
    9. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    10. Eugenio Miravete, 2014. "Testing for complementarities among countable strategies," Empirical Economics, Springer, vol. 46(4), pages 1521-1544, June.
    11. Noel Perceval Assogba & Daowei Zhang, 2020. "An Economic Analysis of Tropical Forest Resource Conservation in a Protected Area," Sustainability, MDPI, vol. 12(14), pages 1-12, July.
    12. Lu Yang & Claudia Czado, 2022. "Two‐part D‐vine copula models for longitudinal insurance claim data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1534-1561, December.
    13. Gning, Lucien & Diagne, M.L. & Tchuenche, J.M., 2023. "Hierarchical generalized linear models, correlation and a posteriori ratemaking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    14. Atella, Vincenzo & Deb, Partha, 2008. "Are primary care physicians, public and private sector specialists substitutes or complements? Evidence from a simultaneous equations model for count data," Journal of Health Economics, Elsevier, vol. 27(3), pages 770-785, May.
    15. Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
    16. Marco Alfò & Giovanni Trovato, 2004. "Semiparametric Mixture Models for Multivariate Count Data, with Application," CEIS Research Paper 51, Tor Vergata University, CEIS.
    17. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
    18. Pravin Trivedi & David Zimmer, 2017. "A Note on Identification of Bivariate Copulas for Discrete Count Data," Econometrics, MDPI, vol. 5(1), pages 1-11, February.
    19. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    20. Bermúdez, Lluís & Guillén, Montserrat & Karlis, Dimitris, 2018. "Allowing for time and cross dependence assumptions between claim counts in ratemaking models," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 161-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:31:y:2022:i:4:d:10.1007_s11749-022-00814-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.