IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i3p244-d487189.html
   My bibliography  Save this article

High-Performance Tracking for Piezoelectric Actuators Using Super-Twisting Algorithm Based on Artificial Neural Networks

Author

Listed:
  • Cristian Napole

    (System Engineering and Automation Deparment, Faculty of Engineering of Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain)

  • Oscar Barambones

    (System Engineering and Automation Deparment, Faculty of Engineering of Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain)

  • Mohamed Derbeli

    (System Engineering and Automation Deparment, Faculty of Engineering of Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain)

  • Isidro Calvo

    (System Engineering and Automation Deparment, Faculty of Engineering of Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain)

  • Mohammed Yousri Silaa

    (System Engineering and Automation Deparment, Faculty of Engineering of Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain)

  • Javier Velasco

    (Fundación Centro de Tecnologías Aeronáuticas (CTA), Juan de la Cierva 1, 01510 Miñano, Spain)

Abstract

Piezoelectric actuators (PEA) are frequently employed in applications where nano-Micr-odisplacement is required because of their high-precision performance. However, the positioning is affected substantially by the hysteresis which resembles in an nonlinear effect. In addition, hysteresis mathematical models own deficiencies that can influence on the reference following performance. The objective of this study was to enhance the tracking accuracy of a commercial PEA stack actuator with the implementation of a novel approach which consists in the use of a Super-Twisting Algorithm (STA) combined with artificial neural networks (ANN). A Lyapunov stability proof is bestowed to explain the theoretical solution. Experimental results of the proposed method were compared with a proportional-integral-derivative (PID) controller. The outcomes in a real PEA reported that the novel structure is stable as it was proved theoretically, and the experiments provided a significant error reduction in contrast with the PID.

Suggested Citation

  • Cristian Napole & Oscar Barambones & Mohamed Derbeli & Isidro Calvo & Mohammed Yousri Silaa & Javier Velasco, 2021. "High-Performance Tracking for Piezoelectric Actuators Using Super-Twisting Algorithm Based on Artificial Neural Networks," Mathematics, MDPI, vol. 9(3), pages 1-20, January.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:3:p:244-:d:487189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/3/244/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/3/244/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Yousri Silaa & Mohamed Derbeli & Oscar Barambones & Ali Cheknane, 2020. "Design and Implementation of High Order Sliding Mode Control for PEMFC Power System," Energies, MDPI, vol. 13(17), pages 1-15, August.
    2. Cristian Napole & Oscar Barambones & Isidro Calvo & Javier Velasco, 2020. "Feedforward Compensation Analysis of Piezoelectric Actuators Using Artificial Neural Networks with Conventional PID Controller and Single-Neuron PID Based on Hebb Learning Rules," Energies, MDPI, vol. 13(15), pages 1-16, August.
    3. Hao Lin & Jose I. Leon & Wensheng Luo & Abraham Marquez & Jianxing Liu & Sergio Vazquez & L. G. Franquelo, 2020. "Integral Sliding-Mode Control-Based Direct Power Control for Three-Level NPC Converters," Energies, MDPI, vol. 13(1), pages 1-20, January.
    4. Fardila Mohd Zaihidee & Saad Mekhilef & Marizan Mubin, 2019. "Robust Speed Control of PMSM Using Sliding Mode Control (SMC)—A Review," Energies, MDPI, vol. 12(9), pages 1-27, May.
    5. Ander Chouza & Oscar Barambones & Isidro Calvo & Javier Velasco, 2019. "Sliding Mode-Based Robust Control for Piezoelectric Actuators with Inverse Dynamics Estimation," Energies, MDPI, vol. 12(5), pages 1-19, March.
    6. Alexander Alyukov & Yuri Rozhdestvenskiy & Sergei Aliukov, 2020. "Active Shock Absorber Control Based on Time-Delay Neural Network," Energies, MDPI, vol. 13(5), pages 1-16, March.
    7. Hyung Keun Ahn & Neungsoo Park, 2021. "Deep RNN-Based Photovoltaic Power Short-Term Forecast Using Power IoT Sensors," Energies, MDPI, vol. 14(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    2. Cristian Napole & Oscar Barambones & Isidro Calvo & Javier Velasco, 2020. "Feedforward Compensation Analysis of Piezoelectric Actuators Using Artificial Neural Networks with Conventional PID Controller and Single-Neuron PID Based on Hebb Learning Rules," Energies, MDPI, vol. 13(15), pages 1-16, August.
    3. El Aoumari, Abdelaziz & Ouadi, Hamid & El-Bakkouri, Jamal & Giri, Fouad, 2024. "Adaptive filtered high-gain observer for PEMFC systems in electric vehicles," Renewable Energy, Elsevier, vol. 231(C).
    4. Mohamed Derbeli & Asma Charaabi & Oscar Barambones & Cristian Napole, 2021. "High-Performance Tracking for Proton Exchange Membrane Fuel Cell System PEMFC Using Model Predictive Control," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    5. Liqin Wu & Hao Chen & Tingyue Yu & Chengzhi Sun & Lin Wang & Xuerong Ye & Guofu Zhai, 2023. "Robust Design Optimization of the Cogging Torque for a PMSM Based on Manufacturing Uncertainties Analysis and Approximate Modeling," Energies, MDPI, vol. 16(2), pages 1-24, January.
    6. Isaac Gallardo & Daniel Amor & Álvaro Gutiérrez, 2023. "Recent Trends in Real-Time Photovoltaic Prediction Systems," Energies, MDPI, vol. 16(15), pages 1-17, July.
    7. Cai Tao & Junjie Lu & Jianxun Lang & Xiaosheng Peng & Kai Cheng & Shanxu Duan, 2021. "Short-Term Forecasting of Photovoltaic Power Generation Based on Feature Selection and Bias Compensation–LSTM Network," Energies, MDPI, vol. 14(11), pages 1-16, May.
    8. Hassam Muazzam & Mohamad Khairi Ishak & Athar Hanif & Ali Arshad Uppal & AI Bhatti & Nor Ashidi Mat Isa, 2022. "Virtual Sensor Using a Super Twisting Algorithm Based Uniform Robust Exact Differentiator for Electric Vehicles," Energies, MDPI, vol. 15(5), pages 1-18, February.
    9. Zhenjie Gong & Xin Ba & Chengning Zhang & Youguang Guo, 2022. "Robust Sliding Mode Control of the Permanent Magnet Synchronous Motor with an Improved Power Reaching Law," Energies, MDPI, vol. 15(5), pages 1-13, March.
    10. Pawel Latosinski & Andrzej Bartoszewicz, 2023. "Sliding Mode Controllers in Energy Systems and Other Applications," Energies, MDPI, vol. 16(3), pages 1-4, January.
    11. Cristian Napole & Oscar Barambones & Isidro Calvo & Mohamed Derbeli & Mohammed Yousri Silaa & Javier Velasco, 2020. "Advances in Tracking Control for Piezoelectric Actuators Using Fuzzy Logic and Hammerstein-Wiener Compensation," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    12. Jiachun Lin & Yuteng Zhao & Pan Zhang & Junjie Wang & Hao Su, 2021. "Research on Compound Sliding Mode Control of a Permanent Magnet Synchronous Motor in Electromechanical Actuators," Energies, MDPI, vol. 14(21), pages 1-17, November.
    13. Maciej Slowik & Wieslaw Urban, 2022. "Machine Learning Short-Term Energy Consumption Forecasting for Microgrids in a Manufacturing Plant," Energies, MDPI, vol. 15(9), pages 1-16, May.
    14. Tiwari, Ankit & Singh, Piyush Pratap & Roy, Binoy Krishna, 2024. "A realizable chaotic system with interesting sets of equilibria, characteristics, and its underactuated predefined-time sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    15. Mohammed Yousri Silaa & Oscar Barambones & José Antonio Cortajarena & Patxi Alkorta & Aissa Bencherif, 2023. "PEMFC Current Control Using a Novel Compound Controller Enhanced by the Black Widow Algorithm: A Comprehensive Simulation Study," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    16. Fredy A. Valenzuela & Reymundo Ramírez & Fermín Martínez & Onofre A. Morfín & Carlos E. Castañeda, 2020. "Super-Twisting Algorithm Applied to Velocity Control of DC Motor without Mechanical Sensors Dependence," Energies, MDPI, vol. 13(22), pages 1-15, November.
    17. Mingyuan Hu & Hyeongki Ahn & Yoonuh Chung & Kwanho You, 2023. "Speed Regulation for PMSM with Super-Twisting Sliding-Mode Controller via Disturbance Observer," Mathematics, MDPI, vol. 11(7), pages 1-15, March.
    18. Jose A. Afonso & Vitor Monteiro & Joao L. Afonso, 2023. "Internet of Things Systems and Applications for Smart Buildings," Energies, MDPI, vol. 16(6), pages 1-3, March.
    19. Kifayat Ullah & Jaroslaw Guzinski & Adeel Feroz Mirza, 2022. "Critical Review on Robust Speed Control Techniques for Permanent Magnet Synchronous Motor (PMSM) Speed Regulation," Energies, MDPI, vol. 15(3), pages 1-13, February.
    20. Feng Jiang & Fan Yang & Songjun Sun & Kai Yang, 2022. "Improved Linear Active Disturbance Rejection Control for IPMSM Drives Considering Load Inertia Mismatch," Energies, MDPI, vol. 15(3), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:3:p:244-:d:487189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.