IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i5p732-d354669.html
   My bibliography  Save this article

A Novel and Simple Mathematical Transform Improves the Perfomance of Lernmatrix in Pattern Classification

Author

Listed:
  • José-Luis Velázquez-Rodríguez

    (Centro de Investigación en Computación, Instituto Politécnico Nacional, CDMX 07738, Mexico)

  • Yenny Villuendas-Rey

    (Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, CDMX 07700, Mexico)

  • Oscar Camacho-Nieto

    (Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, CDMX 07700, Mexico)

  • Cornelio Yáñez-Márquez

    (Centro de Investigación en Computación, Instituto Politécnico Nacional, CDMX 07738, Mexico)

Abstract

The Lernmatrix is a classic associative memory model. The Lernmatrix is capable of executing the pattern classification task, but its performance is not competitive when compared to state-of-the-art classifiers. The main contribution of this paper consists of the proposal of a simple mathematical transform, whose application eliminates the subtractive alterations between patterns. As a consequence, the Lernmatrix performance is significantly improved. To perform the experiments, we selected 20 datasets that are challenging for any classifier, as they exhibit class imbalance. The effectiveness of our proposal was compared against seven supervised classifiers of the most important approaches (Bayes, nearest neighbors, decision trees, logistic function, support vector machines, and neural networks). By choosing balanced accuracy as a performance measure, our proposal obtained the best results in 10 datasets. The elimination of subtractive alterations makes the new model competitive against the best classifiers, and sometimes beats them. After applying the Friedman test and the Holm post hoc test, we can conclude that within a 95% confidence, our proposal competes successfully with the most effective classifiers of the state of the art.

Suggested Citation

  • José-Luis Velázquez-Rodríguez & Yenny Villuendas-Rey & Oscar Camacho-Nieto & Cornelio Yáñez-Márquez, 2020. "A Novel and Simple Mathematical Transform Improves the Perfomance of Lernmatrix in Pattern Classification," Mathematics, MDPI, vol. 8(5), pages 1-46, May.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:732-:d:354669
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/5/732/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/5/732/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Otneim, Håkon & Jullum, Martin & Tjøstheim, Dag, 2020. "Pairwise local Fisher and naive Bayes: Improving two standard discriminants," Journal of Econometrics, Elsevier, vol. 216(1), pages 284-304.
    2. Wang, Xuesong & You, Shikai & Wang, Ling, 2017. "Classifying road network patterns using multinomial logit model," Journal of Transport Geography, Elsevier, vol. 58(C), pages 104-112.
    3. Stavros P. Adam & Stamatios-Aggelos N. Alexandropoulos & Panos M. Pardalos & Michael N. Vrahatis, 2019. "No Free Lunch Theorem: A Review," Springer Optimization and Its Applications, in: Ioannis C. Demetriou & Panos M. Pardalos (ed.), Approximation and Optimization, pages 57-82, Springer.
    4. S. le Cessie & J. C. van Houwelingen, 1992. "Ridge Estimators in Logistic Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 191-201, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco-Antonio Moreno-Ibarra & Yenny Villuendas-Rey & Miltiadis D. Lytras & Cornelio Yáñez-Márquez & Julio-César Salgado-Ramírez, 2021. "Classification of Diseases Using Machine Learning Algorithms: A Comparative Study," Mathematics, MDPI, vol. 9(15), pages 1-21, July.
    2. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    3. André Altmann & Michal Rosen-Zvi & Mattia Prosperi & Ehud Aharoni & Hani Neuvirth & Eugen Schülter & Joachim Büch & Daniel Struck & Yardena Peres & Francesca Incardona & Anders Sönnerborg & Rolf Kaise, 2008. "Comparison of Classifier Fusion Methods for Predicting Response to Anti HIV-1 Therapy," PLOS ONE, Public Library of Science, vol. 3(10), pages 1-9, October.
    4. Janns Alvaro Patiño-Saucedo & Paola Patricia Ariza-Colpas & Shariq Butt-Aziz & Marlon Alberto Piñeres-Melo & José Luis López-Ruiz & Roberto Cesar Morales-Ortega & Emiro De-la-hoz-Franco, 2022. "Predictive Model for Human Activity Recognition Based on Machine Learning and Feature Selection Techniques," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    5. František Dařena & Jan Přichystal, 2018. "Analysis of the Association between Topics in Online Documents and Stock Price Movements," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 66(6), pages 1431-1439.
    6. repec:wyi:journl:002122 is not listed on IDEAS
    7. Masoud Zahedi Vahid & Ziad M. Ali & Ebrahim Seifi Najmi & Abdollah Ahmadi & Foad H. Gandoman & Shady H. E. Abdel Aleem, 2021. "Optimal Allocation and Planning of Distributed Power Generation Resources in a Smart Distribution Network Using the Manta Ray Foraging Optimization Algorithm," Energies, MDPI, vol. 14(16), pages 1-25, August.
    8. Jilong Zhang & Yuan Diao, 2024. "Hierarchical Learning-Enhanced Chaotic Crayfish Optimization Algorithm: Improving Extreme Learning Machine Diagnostics in Breast Cancer," Mathematics, MDPI, vol. 12(17), pages 1-26, August.
    9. Wayne DeSarbo & Heungsun Hwang & Ashley Stadler Blank & Eelco Kappe, 2015. "Constrained Stochastic Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 516-534, June.
    10. Li Shaoyu & Lu Qing & Fu Wenjiang & Romero Roberto & Cui Yuehua, 2009. "A Regularized Regression Approach for Dissecting Genetic Conflicts that Increase Disease Risk in Pregnancy," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-30, October.
    11. Meisam Moghimbeygi & Anahita Nodehi, 2022. "Multinomial Principal Component Logistic Regression on Shape Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 578-599, November.
    12. G Johnes, 2005. "Nations will fall? Revisiting the economic determinants of attitudes to European integration," Working Papers 566772, Lancaster University Management School, Economics Department.
    13. Butaru, Florentin & Chen, Qingqing & Clark, Brian & Das, Sanmay & Lo, Andrew W. & Siddique, Akhtar, 2016. "Risk and risk management in the credit card industry," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 218-239.
    14. repec:lan:wpaper:4385 is not listed on IDEAS
    15. Matthew Herland & Richard A. Bauder & Taghi M. Khoshgoftaar, 2020. "Approaches for identifying U.S. medicare fraud in provider claims data," Health Care Management Science, Springer, vol. 23(1), pages 2-19, March.
    16. Paolo Cimbali & Marco De Leonardis & Alessio Fiume & Barbara La Ganga & Luciana Meoli & Marco Orlandi, 2023. "A decision-making rule to detect insufficient data quality - an application of statistical learning techniques to the non-performing loans banking data," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Post-pandemic landscape for central bank statistics, volume 58, Bank for International Settlements.
    17. Zanin, Luca, 2020. "Combining multiple probability predictions in the presence of class imbalance to discriminate between potential bad and good borrowers in the peer-to-peer lending market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 25(C).
    18. Franz Ratzinger & Harald Bruckschwaiger & Martin Wischenbart & Bernhard Parschalk & Delmiro Fernandez-Reyes & Heimo Lagler & Alexandra Indra & Wolfgang Graninger & Stefan Winkler & Sanjeev Krishna & M, 2012. "Rapid Diagnostic Algorithms as a Screening Tool for Tuberculosis: An Assessor Blinded Cross-Sectional Study," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-6, November.
    19. Arvanitakis, K. & Avlonitis, M. & Papadimitriou, E., 2018. "Introducing stochastic recurrence interval to classification algorithms for identifying asperity patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 566-577.
    20. Sunil Kumar & Ilyoung Chong, 2018. "Correlation Analysis to Identify the Effective Data in Machine Learning: Prediction of Depressive Disorder and Emotion States," IJERPH, MDPI, vol. 15(12), pages 1-24, December.
    21. Wenfa Li & Hongzhe Liu & Peng Yang & Wei Xie, 2016. "Supporting Regularized Logistic Regression Privately and Efficiently," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-19, June.
    22. Luca Insolia & Ana Kenney & Martina Calovi & Francesca Chiaromonte, 2021. "Robust Variable Selection with Optimality Guarantees for High-Dimensional Logistic Regression," Stats, MDPI, vol. 4(3), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:732-:d:354669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.