IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2734-d666717.html
   My bibliography  Save this article

One Cut-Point Phase-Type Distributions in Reliability. An Application to Resistive Random Access Memories

Author

Listed:
  • Christian Acal

    (Department of Statistics and O.R. and IMAG, University of Granada, 18071 Granada, Spain)

  • Juan E. Ruiz-Castro

    (Department of Statistics and O.R. and IMAG, University of Granada, 18071 Granada, Spain)

  • David Maldonado

    (Department of Electronics and Computing Technology, University of Granada, 18071 Granada, Spain)

  • Juan B. Roldán

    (Department of Electronics and Computing Technology, University of Granada, 18071 Granada, Spain)

Abstract

A new probability distribution to study lifetime data in reliability is introduced in this paper. This one is a first approach to a non-homogeneous phase-type distribution. It is built by considering one cut-point in the non-negative semi-line of a phase-type distribution. The density function is defined and the main measures associated, such as the reliability function, hazard rate, cumulative hazard rate and the characteristic function, are also worked out. This new class of distributions enables us to decrease the number of parameters in the estimate when inference is considered. Additionally, the likelihood distribution is built to estimate the model parameters by maximum likelihood. Several applications considering Resistive Random Access Memories compare the adjustment when phase type distributions and one cut-point phase-type distributions are considered. The developed methodology has been computationally implemented in R-cran.

Suggested Citation

  • Christian Acal & Juan E. Ruiz-Castro & David Maldonado & Juan B. Roldán, 2021. "One Cut-Point Phase-Type Distributions in Reliability. An Application to Resistive Random Access Memories," Mathematics, MDPI, vol. 9(21), pages 1-13, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2734-:d:666717
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2734/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2734/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adele H. Marshall & Mariangela Zenga, 2012. "Experimenting with the Coxian Phase-Type Distribution to Uncover Suitable Fits," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 71-86, March.
    2. Elmahdy, Emad E., 2015. "A new approach for Weibull modeling for reliability life data analysis," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 708-720.
    3. Shakhatreh, Mohammed K. & Lemonte, Artur J. & Moreno–Arenas, Germán, 2019. "The log-normal modified Weibull distribution and its reliability implications," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 6-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trindade, Graça & Dias, José G. & Ambrósio, Jorge, 2017. "Extracting clusters from aggregate panel data: A market segmentation study," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 277-288.
    2. Xiaowei Dong & Feng Sun & Fangchao Xu & Qi Zhang & Ran Zhou & Liang Zhang & Zhongwei Liang, 2022. "Three-Parameter Estimation Method of Multiple Hybrid Weibull Distribution Based on the EM Optimization Algorithm," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    3. Lin, Kunsong & Chen, Yunxia, 2021. "Analysis of two-dimensional warranty data considering global and local dependence of heterogeneous marginals," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Boquan Cheng & Rogemar Mamon, 2023. "A uniformisation-driven algorithm for inference-related estimation of a phase-type ageing model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 142-187, January.
    5. Jiang, Renyan & Qi, Faqun & Cao, Yu, 2023. "Relation between aging intensity function and WPP plot and its application in reliability modelling," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Gupta, Sanjib Kumar & Bhattacharya, Debasis, 2022. "Non-parametric estimation of bivariate reliability from incomplete two-dimensional warranty data," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Guzzo, Daniel & Rodrigues, Vinicius Picanço & Mascarenhas, Janaina, 2021. "A systems representation of the Circular Economy: Transition scenarios in the electrical and electronic equipment (EEE) industry," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    8. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Gupta, Sanjib Kumar & Chattopadhyay, Gaurangadeb, 2022. "Early detection of reliability related problems from two-dimensional warranty data considering labour code priority index," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Tien Thanh Thach & Radim Bris, 2020. "Improved new modified Weibull distribution: A Bayes study using Hamiltonian Monte Carlo simulation," Journal of Risk and Reliability, , vol. 234(3), pages 496-511, June.
    11. Lin, Kunsong & Chen, Yunxia & Xu, Dan, 2017. "Reliability assessment model considering heterogeneous population in a multiple stresses accelerated test," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 134-143.
    12. Örkcü, H. Hasan & Özsoy, Volkan Soner & Aksoy, Ertugrul & Dogan, Mustafa Isa, 2015. "Estimating the parameters of 3-p Weibull distribution using particle swarm optimization: A comprehensive experimental comparison," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 201-226.
    13. Du, Yi-Mu & Sun, C.P., 2022. "A novel interpretable model of bathtub hazard rate based on system hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Luis Carlos Méndez-González & Luis Alberto Rodríguez-Picón & Manuel Iván Rodríguez Borbón & Hansuk Sohn, 2023. "The Chen–Perks Distribution: Properties and Reliability Applications," Mathematics, MDPI, vol. 11(13), pages 1-19, July.
    15. Peña-Ramírez, Fernando A. & Guerra, Renata Rojas & Canterle, Diego Ramos & Cordeiro, Gauss M., 2020. "The logistic Nadarajah–Haghighi distribution and its associated regression model for reliability applications," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    16. Pan, Donghui & Wei, Yantao & Fang, Houzhang & Yang, Wenzhi, 2018. "A reliability estimation approach via Wiener degradation model with measurement errors," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 131-141.
    17. Abba, Badamasi & Wang, Hong & Bakouch, Hassan S., 2022. "A reliability and survival model for one and two failure modes system with applications to complete and censored datasets," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    18. Ducros, Florence & Pamphile, Patrick, 2018. "Bayesian estimation of Weibull mixture in heavily censored data setting," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 453-462.
    19. Gurami Tsitsiashvili & Alexandr Losev, 2022. "Safety Margin Prediction Algorithms Based on Linear Regression Analysis Estimates," Mathematics, MDPI, vol. 10(12), pages 1-10, June.
    20. Ping-Chen Chang, 2022. "Reliability evaluation and big data analytics architecture for a stochastic flow network with time attribute," Annals of Operations Research, Springer, vol. 311(1), pages 3-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2734-:d:666717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.