IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2648-d660453.html
   My bibliography  Save this article

Mastering the Body and Tail Shape of a Distribution

Author

Listed:
  • Matthias Wagener

    (Department of Statistics, University of Pretoria, Pretoria 0002, South Africa)

  • Andriette Bekker

    (Department of Statistics, University of Pretoria, Pretoria 0002, South Africa)

  • Mohammad Arashi

    (Department of Statistics, University of Pretoria, Pretoria 0002, South Africa
    Department of Statistics, Ferdowsi University of Mashhad, Mashhad 4897, Iran)

Abstract

The normal distribution and its perturbation have left an immense mark on the statistical literature. Several generalized forms exist to model different skewness, kurtosis, and body shapes. Although they provide better fitting capabilities, these generalizations do not have parameters and formulae with a clear meaning to the practitioner on how the distribution is being modeled. We propose a neat integration approach generalization which intuitively gives direct control of the body and tail shape, the body-tail generalized normal (BTGN). The BTGN provides the basis for a flexible distribution, emphasizing parameter interpretation, estimation properties, and tractability. Basic statistical measures are derived, such as the density function, cumulative density function, moments, moment generating function. Regarding estimation, the equations for maximum likelihood estimation and maximum product spacing estimation are provided. Finally, real-life situations data, such as log-returns, time series, and finite mixture modeling, are modeled using the BTGN. Our results show that it is possible to have more desirable traits in a flexible distribution while still providing a superior fit to industry-standard distributions, such as the generalized hyperbolic, generalized normal, tail-inflated normal, and t distributions.

Suggested Citation

  • Matthias Wagener & Andriette Bekker & Mohammad Arashi, 2021. "Mastering the Body and Tail Shape of a Distribution," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2648-:d:660453
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2648/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    2. Naveau, Philippe & Genton, Marc G. & Shen, Xilin, 2005. "A skewed Kalman filter," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 382-400, June.
    3. Eugene F. Fama, 1965. "Portfolio Analysis in a Stable Paretian Market," Management Science, INFORMS, vol. 11(3), pages 404-419, January.
    4. M. Arashi & S. Nadarajah, 2017. "Generalized elliptical distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(13), pages 6412-6432, July.
    5. David Scott & Diethelm Würtz & Christine Dong & Thanh Tran, 2011. "Moments of the generalized hyperbolic distribution," Computational Statistics, Springer, vol. 26(3), pages 459-476, September.
    6. Saralees Nadarajah & Mahdi Teimouri, 2012. "On the Characteristic Function for Asymmetric Exponential Power Distributions," Econometric Reviews, Taylor & Francis Journals, vol. 31(4), pages 475-481.
    7. Adelchi Azzalini & Marc G. Genton, 2008. "Robust Likelihood Methods Based on the Skew‐t and Related Distributions," International Statistical Review, International Statistical Institute, vol. 76(1), pages 106-129, April.
    8. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    9. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    10. M. Jones, 2004. "Families of distributions arising from distributions of order statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 1-43, June.
    11. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2006. "A Constructive Representation of Univariate Skewed Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 823-829, June.
    12. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    13. Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard, 2003. "Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 561-575, January.
    14. Marcos Antonio Alves Pereira & Cibele Maria Russo, 2019. "Nonlinear mixed-effects models with scale mixture of skew-normal distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(9), pages 1602-1620, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Ley, 2014. "Flexible Modelling in Statistics: Past, present and Future," Working Papers ECARES ECARES 2014-42, ULB -- Universite Libre de Bruxelles.
    2. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    3. Fischer, Matthias J., 2004. "The L-distribution and skew generalizations," Discussion Papers 63/2004, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    4. Fischer, Matthias J., 2006. "The L-distribution and skew generalizations," Discussion Papers 75/2006, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    5. J. Rosco & M. Jones & Arthur Pewsey, 2011. "Skew t distributions via the sinh-arcsinh transformation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 630-652, November.
    6. BenSaïda, Ahmed & Slim, Skander, 2016. "Highly flexible distributions to fit multiple frequency financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 203-213.
    7. Nevrla, Matěj, 2020. "Systemic risk in European financial and energy sectors: Dynamic factor copula approach," Economic Systems, Elsevier, vol. 44(4).
    8. Borowska, Agnieszka & Hoogerheide, Lennart & Koopman, Siem Jan & van Dijk, Herman K., 2020. "Partially censored posterior for robust and efficient risk evaluation," Journal of Econometrics, Elsevier, vol. 217(2), pages 335-355.
    9. Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.
    10. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    11. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    12. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2007. "Model comparison of coordinate-free multivariate skewed distributions with an application to stochastic frontiers," Journal of Econometrics, Elsevier, vol. 137(2), pages 641-673, April.
    13. Francisco J. Rubio & Yili Hong, 2016. "Survival and lifetime data analysis with a flexible class of distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(10), pages 1794-1813, August.
    14. Cao, Yufei, 2022. "Extreme risk spillovers across financial markets under different crises," Economic Modelling, Elsevier, vol. 116(C).
    15. A. Abtahi & M. Towhidi & J. Behboodian, 2011. "An appropriate empirical version of skew-normal density," Statistical Papers, Springer, vol. 52(2), pages 469-489, May.
    16. Garcia, René & Renault, Eric & Veredas, David, 2011. "Estimation of stable distributions by indirect inference," Journal of Econometrics, Elsevier, vol. 161(2), pages 325-337, April.
    17. Arellano-Valle, Reinaldo B. & Azzalini, Adelchi, 2013. "The centred parameterization and related quantities of the skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 73-90.
    18. Dean Fantazzini & Stephan Zimin, 2020. "A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 19-69, March.
    19. Félix Belzunce & Julio Mulero & José María Ruíz & Alfonso Suárez-Llorens, 2015. "On relative skewness for multivariate distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 813-834, December.
    20. Zhicheng Liang & Junwei Wang & Kin Keung Lai, 2020. "Dependence Structure Analysis and VaR Estimation Based on China’s and International Gold Price: A Copula Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 169-193, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2648-:d:660453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.