IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v94y2005i2p382-400.html
   My bibliography  Save this article

A skewed Kalman filter

Author

Listed:
  • Naveau, Philippe
  • Genton, Marc G.
  • Shen, Xilin

Abstract

The popularity of state-space models comes from their flexibilities and the large variety of applications they have been applied to. For multivariate cases, the assumption of normality is very prevalent in the research on Kalman filters. To increase the applicability of the Kalman filter to a wider range of distributions, we propose a new way to introduce skewness to state-space models without losing the computational advantages of the Kalman filter operations. The skewness comes from the extension of the multivariate normal distribution to the closed skew-normal distribution. To illustrate the applicability of such an extension, we present two specific state-space models for which the Kalman filtering operations are carefully described.

Suggested Citation

  • Naveau, Philippe & Genton, Marc G. & Shen, Xilin, 2005. "A skewed Kalman filter," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 382-400, June.
  • Handle: RePEc:eee:jmvana:v:94:y:2005:i:2:p:382-400
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00115-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Genton, Marc G. & He, Li & Liu, Xiangwei, 2001. "Moments of skew-normal random vectors and their quadratic forms," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 319-325, February.
    2. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rezaie, Javad & Eidsvik, Jo, 2014. "Kalman filter variants in the closed skew normal setting," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 1-14.
    2. Guljanov, Gaygysyz & Mutschler, Willi & Trede, Mark, 2022. "Pruned Skewed Kalman Filter and Smoother: With Application to the Yield Curve," Dynare Working Papers 78, CEPREMAP.
    3. Matthias Wagener & Andriette Bekker & Mohammad Arashi, 2021. "Mastering the Body and Tail Shape of a Distribution," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    4. Cabral, Celso Rômulo Barbosa & da-Silva, Cibele Queiroz & Migon, Helio S., 2014. "A dynamic linear model with extended skew-normal for the initial distribution of the state parameter," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 64-80.
    5. Christophe Ley, 2014. "Flexible Modelling in Statistics: Past, present and Future," Working Papers ECARES ECARES 2014-42, ULB -- Universite Libre de Bruxelles.
    6. Reinaldo B. Arellano-Valle & Javier E. Contreras-Reyes & Freddy O. López Quintero & Abel Valdebenito, 2019. "A skew-normal dynamic linear model and Bayesian forecasting," Computational Statistics, Springer, vol. 34(3), pages 1055-1085, September.
    7. Uliha, Gábor, 2016. "Az olajár gyengülő makrogazdasági hatásai. Két versengő elmélet szintézise [Weakening macroeconomic effects of the oil price. A synthesis of two competing theories]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 787-818.
    8. Kim, Hyoung-Moon & Ryu, Duchwan & Mallick, Bani K. & Genton, Marc G., 2014. "Mixtures of skewed Kalman filters," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 228-251.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, B.Q., 2006. "Sample mean, covariance and T2 statistic of the skew elliptical model," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1675-1690, August.
    2. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
    3. Arjun Gupta & John Chen, 2004. "A class of multivariate skew-normal models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(2), pages 305-315, June.
    4. Wang, Tonghui & Li, Baokun & Gupta, Arjun K., 2009. "Distribution of quadratic forms under skew normal settings," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 533-545, March.
    5. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    6. Angela Montanari & Cinzia Viroli, 2010. "A skew-normal factor model for the analysis of student satisfaction towards university courses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(3), pages 473-487.
    7. Fang, B.Q., 2005. "Noncentral quadratic forms of the skew elliptical variables," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 410-430, August.
    8. Fang, B. Q., 2003. "The skew elliptical distributions and their quadratic forms," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 298-314, November.
    9. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.
    10. Gupta, Arjun K. & González-Farías, Graciela & Domínguez-Molina, J. Armando, 2004. "A multivariate skew normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 89(1), pages 181-190, April.
    11. Huang, Wen-Jang & Chen, Yan-Hau, 2007. "Generalized skew-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1137-1147, June.
    12. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    13. Reinaldo Arellano-Valle & Marc Genton, 2010. "An invariance property of quadratic forms in random vectors with a selection distribution, with application to sample variogram and covariogram estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 363-381, April.
    14. Alessandra Durio & Yacov Yu. Nikitin, 2001. "Local asympotic efficiency of some goodness-of-fit tests under skew alternatives," ICER Working Papers 04-2001, ICER - International Centre for Economic Research.
    15. Kim, Hyoung-Moon & Ryu, Duchwan & Mallick, Bani K. & Genton, Marc G., 2014. "Mixtures of skewed Kalman filters," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 228-251.
    16. Jana, Sayantee & Balakrishnan, Narayanaswamy & Hamid, Jemila S., 2018. "Estimation of the parameters of the extended growth curve model under multivariate skew normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 111-128.
    17. Alessandra Durio & Yakov Nikitin, 2002. "Asympotic efficiency of signed - rank symmetry tests under skew alternatives," ICER Working Papers 12-2002, ICER - International Centre for Economic Research.
    18. Kim, Hyoung-Moon & Mallick, Bani K., 2003. "Moments of random vectors with skew t distribution and their quadratic forms," Statistics & Probability Letters, Elsevier, vol. 63(4), pages 417-423, July.
    19. Vilca, Filidor & Balakrishnan, N. & Zeller, Camila Borelli, 2014. "Multivariate Skew-Normal Generalized Hyperbolic distribution and its properties," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 73-85.
    20. Li, Johnny Siu-Hang & Liu, Yanxin & Chan, Wai-Sum, 2023. "Hedging longevity risk under non-Gaussian state-space stochastic mortality models: A mean-variance-skewness-kurtosis approach," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 96-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:94:y:2005:i:2:p:382-400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.