Analysis and Optimization of Axial Flux Permanent Magnet Machine for Cogging Torque Reduction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Magnus Hedlund & Tobias Kamf & Juan De Santiago & Johan Abrahamsson & Hans Bernhoff, 2017. "Reluctance Machine for a Hollow Cylinder Flywheel," Energies, MDPI, vol. 10(3), pages 1-18, March.
- Joya C. Kappatou & Georgios D. Zalokostas & Dimitrios A. Spyratos, 2017. "3-D FEM Analysis, Prototyping and Tests of an Axial Flux Permanent-Magnet Wind Generator," Energies, MDPI, vol. 10(9), pages 1-14, August.
- Abdalla Hussein Mohamed & Ahmed Hemeida & Hendrik Vansompel & Peter Sergeant, 2018. "Parametric Studies for Combined Convective and Conductive Heat Transfer for YASA Axial Flux Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 11(11), pages 1-18, November.
- Xiang Luo & Shuangxia Niu, 2016. "Maximum Power Point Tracking Sensorless Control of an Axial-Flux Permanent Magnet Vernier Wind Power Generator," Energies, MDPI, vol. 9(8), pages 1-17, July.
- Christopher H. T. Lee & Chunhua Liu & K. T. Chau, 2014. "A Magnetless Axial-Flux Machine for Range-Extended Electric Vehicles," Energies, MDPI, vol. 7(3), pages 1-17, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ziaul Islam & Faisal Khan & Basharat Ullah & Ahmad H. Milyani & Abdullah Ahmed Azhari, 2022. "Design and Analysis of Three Phase Axial Flux Permanent Magnet Machine with Different PM Shapes for Electric Vehicles," Energies, MDPI, vol. 15(20), pages 1-13, October.
- Zia Mahmood & Junaid Ikram & Rabiah Badar & Syed Sabir Hussain Bukhari & Madad Ali Shah & Ali Asghar Memon & Mikulas Huba, 2022. "Minimization of Torque Ripples in Multi-Stack Slotted Stator Axial-Flux Synchronous Machine by Modifying Magnet Shape," Mathematics, MDPI, vol. 10(10), pages 1-16, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jianfei Zhao & Minqi Hua & Tingzhang Liu, 2018. "Research on a Sliding Mode Vector Control System Based on Collaborative Optimization of an Axial Flux Permanent Magnet Synchronous Motor for an Electric Vehicle," Energies, MDPI, vol. 11(11), pages 1-16, November.
- Nikola Lopac & Neven Bulic & Niksa Vrkic, 2019. "Sliding Mode Observer-Based Load Angle Estimation for Salient-Pole Wound Rotor Synchronous Generators," Energies, MDPI, vol. 12(9), pages 1-22, April.
- Alireza Rasekh & Peter Sergeant & Jan Vierendeels, 2016. "Development of Correlations for Windage Power Losses Modeling in an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Features of the Magnets," Energies, MDPI, vol. 9(12), pages 1-17, November.
- Feng Chai & Yunlong Bi & Yulong Pei, 2017. "Magnet Shape Optimization of Two-Layer Spoke-Type Axial Flux Interior Permanent Magnet Machines," Energies, MDPI, vol. 11(1), pages 1-14, December.
- Wanli Cai & Chenglin Gu & Xiaodong Hu, 2015. "Analysis and Design of a Permanent Magnet Bi-Stable Electro-Magnetic Clutch Unit for In-Wheel Electric Vehicle Drives," Energies, MDPI, vol. 8(6), pages 1-15, June.
- Andrzej Smoleń & Lesław Gołębiowski & Marek Gołębiowski & Damian Mazur, 2019. "Computationally Efficient Method of Co-Energy Calculation for Transverse Flux Machine Based on Poisson Equation in 2D," Energies, MDPI, vol. 12(22), pages 1-16, November.
- Roberto Rocca & Savvas Papadopoulos & Mohamed Rashed & George Prassinos & Fabio Giulii Capponi & Michael Galea, 2020. "Design Trade-Offs and Feasibility Assessment of a Novel One-Body, Laminated-Rotor Flywheel Switched Reluctance Machine," Energies, MDPI, vol. 13(22), pages 1-19, November.
- Alexandra C. Barmpatza & Joya C. Kappatou, 2020. "Study of a Combined Demagnetization and Eccentricity Fault in an AFPM Synchronous Generator," Energies, MDPI, vol. 13(21), pages 1-17, October.
- Yubin Wang & Guangyong Yang & Xinkai Zhu & Xianglin Li & Wenzhong Ma, 2018. "Electromagnetic Characteristics Analysis of a High-Temperature Superconducting Field-Modulation Double-Stator Machine with Stationary Seal," Energies, MDPI, vol. 11(5), pages 1-13, May.
- Lun Jia & Mingyao Lin & Keman Lin & Wei Le & Anchen Yang, 2022. "Design and Analysis of Dual-Rotor Modular-Stator Hybrid-Excited Axial-Flux Permanent Magnet Vernier Machine," Energies, MDPI, vol. 15(4), pages 1-13, February.
- Dongran Song & Jian Yang & Mei Su & Anfeng Liu & Yao Liu & Young Hoon Joo, 2017. "A Comparison Study between Two MPPT Control Methods for a Large Variable-Speed Wind Turbine under Different Wind Speed Characteristics," Energies, MDPI, vol. 10(5), pages 1-18, May.
- Yujun Shi & Jin Wei & Zhengxing Deng & Linni Jian, 2017. "A Novel Electric Vehicle Powertrain System Supporting Multi-Path Power Flows: Its Architecture, Parameter Determination and System Simulation," Energies, MDPI, vol. 10(2), pages 1-15, February.
- Qingsong Wang & Shuangxia Niu, 2018. "A Novel DC-Coil-Free Hybrid-Excited Machine with Consequent-Pole PM Rotor," Energies, MDPI, vol. 11(4), pages 1-16, March.
- Jilong Zhao & Xiaowei Quan & Mengdie Jing & Mingyao Lin & Nian Li, 2018. "Design, Analysis and Model Predictive Control of an Axial Field Switched-Flux Permanent Magnet Machine for Electric Vehicle/Hybrid Electric Vehicle Applications," Energies, MDPI, vol. 11(7), pages 1-22, July.
- Stanisław J. Hajnrych & Rafał Jakubowski & Jan Szczypior, 2020. "Yokeless Axial Flux Surface-Mounted Permanent Magnets Machine Rotor Parameters Influence on Torque and Back-Emf," Energies, MDPI, vol. 13(13), pages 1-15, July.
- Xiaoyuan Wang & Sijia Xu & Chunpeng Li & Xiang Li, 2017. "Field-Weakening Performance Improvement of the Yokeless and Segmented Armature Axial Flux Motor for Electric Vehicles," Energies, MDPI, vol. 10(10), pages 1-12, September.
- Xiaolian Zhang & Can Huang & Sipeng Hao & Fan Chen & Jingjing Zhai, 2016. "An Improved Adaptive-Torque-Gain MPPT Control for Direct-Driven PMSG Wind Turbines Considering Wind Farm Turbulences," Energies, MDPI, vol. 9(11), pages 1-16, November.
- Joya C. Kappatou & Georgios D. Zalokostas & Dimitrios A. Spyratos, 2017. "3-D FEM Analysis, Prototyping and Tests of an Axial Flux Permanent-Magnet Wind Generator," Energies, MDPI, vol. 10(9), pages 1-14, August.
- Jing Zhao & Bin Li & Zhongxin Gu, 2015. "Research on an Axial Flux PMSM with Radially Sliding Permanent Magnets," Energies, MDPI, vol. 8(3), pages 1-22, February.
- Jyun-You Chen & Shih-Chin Yang & Kai-Hsiang Tu, 2018. "Comparative Evaluation of a Permanent Magnet Machine Saliency-Based Drive with Sine-Wave and Square-Wave Voltage Injection," Energies, MDPI, vol. 11(9), pages 1-15, August.
More about this item
Keywords
Axial flux permanent magnet machine; 3D FEA; Genetic algorithm; hexagonal-shaped PMs; PM overhang;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:15:p:1738-:d:600008. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.