IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1458-d751164.html
   My bibliography  Save this article

Design and Analysis of Dual-Rotor Modular-Stator Hybrid-Excited Axial-Flux Permanent Magnet Vernier Machine

Author

Listed:
  • Lun Jia

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Mingyao Lin

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Keman Lin

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

  • Wei Le

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Anchen Yang

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

This paper proposes a new structure of the dual-rotor hybrid-excited axial-flux permanent magnet vernier machine (DR-HEAFPMVM) with the modular stator and the consequent-pole PM (CPM) rotor for low-speed, high torque density applications such as in-wheel electric vehicles. The tooth-wound non-overlapping armature windings and direct current (DC) excitation windings are, respectively, arranged in stator main-teeth and split-teeth to obtain the modulated and adjustable air-gap flux densities, resulting in high torque density and outstanding flux-weakening capability. First, the design considerations, operation principles, and air-gap flux density distributions of the proposed machine are elaborated based on the air-gap permeance function. Then, the influence of the pole ratios (PRs) and the DC excitation currents on the main electromagnetic performances of the DR-HEAFPMVM, such as the flux-weakening capability and back-electromotive force (back-EMF), on-load electromagnetic torque, loss distribution, and efficiencies, is investigated using the 3-D finite-element method (FEM). Results verify the feasibility of the flux adjustment of the DC excitation windings equipped in the split-tooth, and the design with a pole ratio of 8/1 tends to have higher torque density, higher machine efficiency, and considerable flux-weakening capability compared with the other two PRs.

Suggested Citation

  • Lun Jia & Mingyao Lin & Keman Lin & Wei Le & Anchen Yang, 2022. "Design and Analysis of Dual-Rotor Modular-Stator Hybrid-Excited Axial-Flux Permanent Magnet Vernier Machine," Energies, MDPI, vol. 15(4), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1458-:d:751164
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdalla Hussein Mohamed & Ahmed Hemeida & Hendrik Vansompel & Peter Sergeant, 2018. "Parametric Studies for Combined Convective and Conductive Heat Transfer for YASA Axial Flux Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 11(11), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hina Usman & Junaid Ikram & Khurram Saleem Alimgeer & Muhammad Yousuf & Syed Sabir Hussain Bukhari & Jong-Suk Ro, 2021. "Analysis and Optimization of Axial Flux Permanent Magnet Machine for Cogging Torque Reduction," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    2. Guangchen Wang & Yingjie Wang & Yuan Gao & Wei Hua & Qinan Ni & Hengliang Zhang, 2022. "Thermal Model Approach to the YASA Machine for In-Wheel Traction Applications," Energies, MDPI, vol. 15(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1458-:d:751164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.