IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5609-d435314.html
   My bibliography  Save this article

Study of a Combined Demagnetization and Eccentricity Fault in an AFPM Synchronous Generator

Author

Listed:
  • Alexandra C. Barmpatza

    (Department of Electrical and Computer Engineering, University of Patras, 26504 Patras, Greece)

  • Joya C. Kappatou

    (Department of Electrical and Computer Engineering, University of Patras, 26504 Patras, Greece)

Abstract

This article investigates the combined partial demagnetization and static eccentricity fault in an Axial Flux Permanent Magnet (AFPM) Synchronous Generator. The machine is simulated using 3D FEM, while the EMF spectrum is analyzed in order to export the fault related harmonics using the FFT analysis. Firstly, the partial demagnetization fault, without the coexistence of eccentricity, and both the static angular and axis eccentricity faults, without the coexistence of partial demagnetization, are studied. In the case of eccentricity fault, the phase EMF sum spectrum has also been used as a diagnostic mean, because, when only eccentricity fault exists in the generator (either angular or axis) new harmonics do not appear in the EMF spectrum. Secondly the combination of partial demagnetization fault with static axis and static angular eccentricity is investigated and different comparisons are made when the demagnetization and the eccentricity level changes. The investigation revealed that the combination of eccentricity and demagnetization creates new harmonics in the EMF spectrum. The novelty of the article is that these combined faults are studied for the first time in the international literature, and the phase EMF sum spectrum has not been previously used for eccentricity diagnosis in this machine type.

Suggested Citation

  • Alexandra C. Barmpatza & Joya C. Kappatou, 2020. "Study of a Combined Demagnetization and Eccentricity Fault in an AFPM Synchronous Generator," Energies, MDPI, vol. 13(21), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5609-:d:435314
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5609/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5609/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joya C. Kappatou & Georgios D. Zalokostas & Dimitrios A. Spyratos, 2017. "3-D FEM Analysis, Prototyping and Tests of an Axial Flux Permanent-Magnet Wind Generator," Energies, MDPI, vol. 10(9), pages 1-14, August.
    2. Yunkai Huang & Baocheng Guo & Ahmed Hemeida & Peter Sergeant, 2016. "Analytical Modeling of Static Eccentricities in Axial Flux Permanent-Magnet Machines with Concentrated Windings," Energies, MDPI, vol. 9(11), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin-Cheol Park & Soo-Hwan Park & Jae-Hyun Kim & Soo-Gyung Lee & Geun-Ho Lee & Myung-Seop Lim, 2021. "Diagnosis and Robust Design Optimization of SPMSM Considering Back EMF and Cogging Torque due to Static Eccentricity," Energies, MDPI, vol. 14(10), pages 1-19, May.
    2. Apostolos Lamprokostopoulos & Epameinondas Mitronikas & Alexandra Barmpatza, 2022. "Detection of Demagnetization Faults in Axial Flux Permanent-Magnet Synchronous Wind Generators," Energies, MDPI, vol. 15(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Chai & Yunlong Bi & Yulong Pei, 2017. "Magnet Shape Optimization of Two-Layer Spoke-Type Axial Flux Interior Permanent Magnet Machines," Energies, MDPI, vol. 11(1), pages 1-14, December.
    2. Hina Usman & Junaid Ikram & Khurram Saleem Alimgeer & Muhammad Yousuf & Syed Sabir Hussain Bukhari & Jong-Suk Ro, 2021. "Analysis and Optimization of Axial Flux Permanent Magnet Machine for Cogging Torque Reduction," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    3. Alireza Rasekh & Peter Sergeant & Jan Vierendeels, 2016. "Development of Correlations for Windage Power Losses Modeling in an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Features of the Magnets," Energies, MDPI, vol. 9(12), pages 1-17, November.
    4. Andrzej Smoleń & Lesław Gołębiowski & Marek Gołębiowski & Damian Mazur, 2019. "Computationally Efficient Method of Co-Energy Calculation for Transverse Flux Machine Based on Poisson Equation in 2D," Energies, MDPI, vol. 12(22), pages 1-16, November.
    5. Lei Xu & Mingyao Lin & Xinghe Fu & Kai Liu & Baocheng Guo, 2017. "Analytical Calculation of the Magnetic Field Distribution in a Linear and Rotary Machine with an Orthogonally Arrayed Permanent Magnet," Energies, MDPI, vol. 10(4), pages 1-18, April.
    6. Qingsong Wang & Shuangxia Niu, 2018. "A Novel DC-Coil-Free Hybrid-Excited Machine with Consequent-Pole PM Rotor," Energies, MDPI, vol. 11(4), pages 1-16, March.
    7. Jilong Zhao & Xiaowei Quan & Mengdie Jing & Mingyao Lin & Nian Li, 2018. "Design, Analysis and Model Predictive Control of an Axial Field Switched-Flux Permanent Magnet Machine for Electric Vehicle/Hybrid Electric Vehicle Applications," Energies, MDPI, vol. 11(7), pages 1-22, July.
    8. Stanisław J. Hajnrych & Rafał Jakubowski & Jan Szczypior, 2020. "Yokeless Axial Flux Surface-Mounted Permanent Magnets Machine Rotor Parameters Influence on Torque and Back-Emf," Energies, MDPI, vol. 13(13), pages 1-15, July.
    9. Xiaoyuan Wang & Sijia Xu & Chunpeng Li & Xiang Li, 2017. "Field-Weakening Performance Improvement of the Yokeless and Segmented Armature Axial Flux Motor for Electric Vehicles," Energies, MDPI, vol. 10(10), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5609-:d:435314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.