IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p700-d137279.html
   My bibliography  Save this article

A Novel DC-Coil-Free Hybrid-Excited Machine with Consequent-Pole PM Rotor

Author

Listed:
  • Qingsong Wang

    (Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

  • Shuangxia Niu

    (Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

Abstract

This paper proposes a new DC coil free hybrid excited machine concept, which has no external field windings. The technical novelty is the integration of field windings and armature windings. DC bias current is injected into the excitation and the field windings in the traditional hybrid excited machine are eliminated. Compared with traditional hybrid-excited machines with additional field windings, the proposed machine can realize a higher slot utilization ratio, hence achieve a higher torque density and a wider flux adjusting range. Another advantage of the proposed machine is that the voltage drop associated with flux regulation is small due to the small DC resistance, and the torque generating capability at the flux regulating region can be improved accordingly. The rotor is specifically designed with magnet-iron sequences and a consequent-pole, in which the permanent magnet and iron pole are alternatively employed. A bi-directional flux modulating effect can be achieved, which can contribute to the magnetic coupling in the air-gap. Analytical derivation is used to describe the operating principle, and the proposed machine was optimally designed using the Tabu search algorithm. A prototype was made, and its performances investigated through experimental tests.

Suggested Citation

  • Qingsong Wang & Shuangxia Niu, 2018. "A Novel DC-Coil-Free Hybrid-Excited Machine with Consequent-Pole PM Rotor," Energies, MDPI, vol. 11(4), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:700-:d:137279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joya C. Kappatou & Georgios D. Zalokostas & Dimitrios A. Spyratos, 2017. "3-D FEM Analysis, Prototyping and Tests of an Axial Flux Permanent-Magnet Wind Generator," Energies, MDPI, vol. 10(9), pages 1-14, August.
    2. Wang, Qingsong & Niu, Shuangxia, 2017. "Overview of flux-controllable machines: Electrically excited machines, hybrid excited machines and memory machines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 475-491.
    3. Qingsong Wang & Shuangxia Niu, 2015. "Electromagnetic Design and Analysis of a Novel Fault-Tolerant Flux-Modulated Memory Machine," Energies, MDPI, vol. 8(8), pages 1-17, August.
    4. Guan-Ren Chen & Shih-Chin Yang & Yu-Liang Hsu & Kang Li, 2017. "Position and Speed Estimation of Permanent Magnet Machine Sensorless Drive at High Speed Using an Improved Phase-Locked Loop," Energies, MDPI, vol. 10(10), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pingfan Xu & Xiaoyi Liu & Samson Shenglong Yu & Lisheng Pang, 2022. "ZVS Realization of H-Bridge Low-Voltage High-Current Converter via Phase-Shift and Saturable Control," Energies, MDPI, vol. 15(24), pages 1-11, December.
    2. Qingsong Wang & Yu Wu & Shuangxia Niu & Xing Zhao, 2022. "Advances in Thermal Management Technologies of Electrical Machines," Energies, MDPI, vol. 15(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hina Usman & Junaid Ikram & Khurram Saleem Alimgeer & Muhammad Yousuf & Syed Sabir Hussain Bukhari & Jong-Suk Ro, 2021. "Analysis and Optimization of Axial Flux Permanent Magnet Machine for Cogging Torque Reduction," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    2. Jongwon Choi & Kwanghee Nam, 2018. "Wound Synchronous Machine Sensorless Control Based on Signal Injection into the Rotor Winding," Energies, MDPI, vol. 11(12), pages 1-20, November.
    3. Ziqi Huang & Xing Zhao & Weiyu Wang & Shuangxia Niu, 2022. "Hybrid Reluctance Machine with Skewed Permanent Magnets and Zero-Sequence Current Excitation," Energies, MDPI, vol. 15(22), pages 1-17, November.
    4. Feng Chai & Yunlong Bi & Yulong Pei, 2017. "Magnet Shape Optimization of Two-Layer Spoke-Type Axial Flux Interior Permanent Magnet Machines," Energies, MDPI, vol. 11(1), pages 1-14, December.
    5. Andrzej Smoleń & Lesław Gołębiowski & Marek Gołębiowski & Damian Mazur, 2019. "Computationally Efficient Method of Co-Energy Calculation for Transverse Flux Machine Based on Poisson Equation in 2D," Energies, MDPI, vol. 12(22), pages 1-16, November.
    6. Alexandra C. Barmpatza & Joya C. Kappatou, 2020. "Study of a Combined Demagnetization and Eccentricity Fault in an AFPM Synchronous Generator," Energies, MDPI, vol. 13(21), pages 1-17, October.
    7. Weiwei Gu & Xiaoyong Zhu & Li Quan & Yi Du, 2015. "Design and Optimization of Permanent Magnet Brushless Machines for Electric Vehicle Applications," Energies, MDPI, vol. 8(12), pages 1-13, December.
    8. Yulong Liu & Xiaodong Zhang & Shuangxia Niu & Weinong Fu & Xinhua Guo, 2020. "Design and Analysis of a Linear Memory Machine for Ocean Wave Power Generation," Energies, MDPI, vol. 13(19), pages 1-12, October.
    9. Xiaodong Zhang & Xing Zhao & Shuangxia Niu, 2019. "A Novel Dual-Structure Parallel Hybrid Excitation Machine for Electric Vehicle Propulsion," Energies, MDPI, vol. 12(3), pages 1-11, January.
    10. Wang, Qingsong & Niu, Shuangxia, 2017. "Overview of flux-controllable machines: Electrically excited machines, hybrid excited machines and memory machines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 475-491.
    11. Jilong Zhao & Xiaowei Quan & Mengdie Jing & Mingyao Lin & Nian Li, 2018. "Design, Analysis and Model Predictive Control of an Axial Field Switched-Flux Permanent Magnet Machine for Electric Vehicle/Hybrid Electric Vehicle Applications," Energies, MDPI, vol. 11(7), pages 1-22, July.
    12. Haidar Diab & Yacine Amara & Sami Hlioui & Johannes J. H. Paulides, 2021. "Design and Realization of a Hybrid Excited Flux Switching Vernier Machine for Renewable Energy Conversion," Energies, MDPI, vol. 14(19), pages 1-23, September.
    13. Stanisław J. Hajnrych & Rafał Jakubowski & Jan Szczypior, 2020. "Yokeless Axial Flux Surface-Mounted Permanent Magnets Machine Rotor Parameters Influence on Torque and Back-Emf," Energies, MDPI, vol. 13(13), pages 1-15, July.
    14. Xiaoyuan Wang & Sijia Xu & Chunpeng Li & Xiang Li, 2017. "Field-Weakening Performance Improvement of the Yokeless and Segmented Armature Axial Flux Motor for Electric Vehicles," Energies, MDPI, vol. 10(10), pages 1-12, September.
    15. Shun Li & Xinxiu Zhou, 2018. "Sensorless Energy Conservation Control for Permanent Magnet Synchronous Motors Based on a Novel Hybrid Observer Applied in Coal Conveyer Systems," Energies, MDPI, vol. 11(10), pages 1-23, September.
    16. Alessandro Benevieri & Lorenzo Carbone & Simone Cosso & Krishneel Kumar & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2022. "Surface Permanent Magnet Synchronous Motors’ Passive Sensorless Control: A Review," Energies, MDPI, vol. 15(20), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:700-:d:137279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.