IDEAS home Printed from https://ideas.repec.org/p/mpr/mprres/44e95d7566434a21b8d57f951a2047b1.html
   My bibliography  Save this paper

Impacts of School Reforms in Washington, DC on Student Achievement

Author

Listed:
  • Dallas Dotter
  • Duncan Chaplin
  • Maria Bartlett

Abstract

This report estimates (1) how test scores and student demographics in DC changed over time after 2007, compared to similar students in geographic areas without such reforms; (2) how results differed by student demographics; and (3) how postsecondary readiness among DC students changed in terms of SAT participation and achievement.

Suggested Citation

  • Dallas Dotter & Duncan Chaplin & Maria Bartlett, "undated". "Impacts of School Reforms in Washington, DC on Student Achievement," Mathematica Policy Research Reports 44e95d7566434a21b8d57f951, Mathematica Policy Research.
  • Handle: RePEc:mpr:mprres:44e95d7566434a21b8d57f951a2047b1
    as

    Download full text from publisher

    File URL: https://www.mathematica.org/-/media/publications/pdfs/education/2021/dc-school-reforms-study-2021_final.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steven G. Rivkin & Eric A. Hanushek & John F. Kain, 2005. "Teachers, Schools, and Academic Achievement," Econometrica, Econometric Society, vol. 73(2), pages 417-458, March.
    2. Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
    3. Eric A. Hanushek & John F. Kain & Steven G. Rivkin, 2009. "New Evidence about Brown v. Board of Education: The Complex Effects of School Racial Composition on Achievement," Journal of Labor Economics, University of Chicago Press, vol. 27(3), pages 349-383, July.
    4. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
    5. Alberto Abadie & Alexis Diamond & Jens Hainmueller, 2015. "Comparative Politics and the Synthetic Control Method," American Journal of Political Science, John Wiley & Sons, vol. 59(2), pages 495-510, February.
    6. Nikolay Doudchenko & Guido W. Imbens, 2016. "Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis," NBER Working Papers 22791, National Bureau of Economic Research, Inc.
    7. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    8. Xu, Yiqing, 2017. "Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models," Political Analysis, Cambridge University Press, vol. 25(1), pages 57-76, January.
    9. Jacob, Brian A., 2005. "Accountability, incentives and behavior: the impact of high-stakes testing in the Chicago Public Schools," Journal of Public Economics, Elsevier, vol. 89(5-6), pages 761-796, June.
    10. Jonah E. Rockoff, 2004. "The Impact of Individual Teachers on Student Achievement: Evidence from Panel Data," American Economic Review, American Economic Association, vol. 94(2), pages 247-252, May.
    11. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    12. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    2. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    3. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
    4. Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
    5. Irene Botosaru & Bruno Ferman, 2019. "On the role of covariates in the synthetic control method," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 117-130.
    6. Michał Marcin Kobierecki & Michał Pierzgalski, 2022. "Sports Mega-Events and Economic Growth: A Synthetic Control Approach," Journal of Sports Economics, , vol. 23(5), pages 567-597, June.
    7. Bai, Jushan & Wang, Peng, 2024. "Causal inference using factor models," MPRA Paper 120585, University Library of Munich, Germany.
    8. Stefano, Roberta di & Mellace, Giovanni, 2020. "The inclusive synthetic control method," Discussion Papers on Economics 14/2020, University of Southern Denmark, Department of Economics.
    9. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    10. Bruno Ferman, 2021. "On the Properties of the Synthetic Control Estimator with Many Periods and Many Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1764-1772, October.
    11. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    12. Bennato, Anna Rita & Davies, Stephen & Mariuzzo, Franco & Ormosi, Peter, 2021. "Mergers and innovation: Evidence from the hard disk drive market," International Journal of Industrial Organization, Elsevier, vol. 77(C).
    13. Yi‐Ting Chen, 2020. "A distributional synthetic control method for policy evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 505-525, August.
    14. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    15. Guido W. Imbens & Davide Viviano, 2023. "Identification and Inference for Synthetic Controls with Confounding," Papers 2312.00955, arXiv.org.
    16. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    17. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).
    18. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    19. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    20. Sviták, Jan & Tichem, Jan & Haasbeek, Stefan, 2021. "Price effects of search advertising restrictions," International Journal of Industrial Organization, Elsevier, vol. 77(C).

    More about this item

    Keywords

    education; school reforms; teacher effectiveness; Public Education Reform Amendment Act (PERAA); District of Columbia;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mpr:mprres:44e95d7566434a21b8d57f951a2047b1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joanne Pfleiderer or Cindy George (email available below). General contact details of provider: https://edirc.repec.org/data/mathius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.