IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v9y2019i11d10.1038_s41558-019-0583-9.html
   My bibliography  Save this article

Reduced resilience as an early warning signal of forest mortality

Author

Listed:
  • Yanlan Liu

    (Duke University)

  • Mukesh Kumar

    (Duke University
    University of Alabama)

  • Gabriel G. Katul

    (Duke University
    Duke University)

  • Amilcare Porporato

    (Princeton University
    Princeton University)

Abstract

Climate-induced forest mortality is being widely observed across the globe. Predicting forest mortality remains challenging because the physiological mechanisms causing mortality are not fully understood and empirical relations between climatology and mortality are subject to change. Here, we show that the temporal loss of resilience, a phenomenon often detected as a system approaches a tipping point, can be used as an early warning signal (EWS) to predict the likelihood of forest mortality directly from remotely sensed vegetation dynamics. We tested the proposed approach on data from Californian forests and found that the EWS can often be detected before reduced greenness, between 6 to 19 months before mortality. The EWS shows a species-specific relation with mortality, and is able to capture its spatio-temporal variations. These findings highlight the potential for such an EWS to predict forest mortality in the near-term.

Suggested Citation

  • Yanlan Liu & Mukesh Kumar & Gabriel G. Katul & Amilcare Porporato, 2019. "Reduced resilience as an early warning signal of forest mortality," Nature Climate Change, Nature, vol. 9(11), pages 880-885, November.
  • Handle: RePEc:nat:natcli:v:9:y:2019:i:11:d:10.1038_s41558-019-0583-9
    DOI: 10.1038/s41558-019-0583-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-019-0583-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-019-0583-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murthy, Karthik K, 2024. "A trait-based approach to integrate resilience frameworks," Ecological Modelling, Elsevier, vol. 493(C).
    2. Feliu Serra-Burriel & Pedro Delicado & Fernando M. Cucchietti, 2021. "Wildfires Vegetation Recovery through Satellite Remote Sensing and Functional Data Analysis," Mathematics, MDPI, vol. 9(11), pages 1-22, June.
    3. Florian Diekert & Daniel Heyen & Frikk Nesje & Soheil Shayegh, 2024. "Balancing the Risk of Tipping: Early Warning Systems from Detection to Management," CESifo Working Paper Series 10892, CESifo.
    4. Naoki Masuda & Kazuyuki Aihara & Neil G. MacLaren, 2024. "Anticipating regime shifts by mixing early warning signals from different nodes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Taylor Smith & Niklas Boers, 2023. "Global vegetation resilience linked to water availability and variability," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Timothy M. Lenton & Jesse F. Abrams & Annett Bartsch & Sebastian Bathiany & Chris A. Boulton & Joshua E. Buxton & Alessandra Conversi & Andrew M. Cunliffe & Sophie Hebden & Thomas Lavergne & Benjamin , 2024. "Remotely sensing potential climate change tipping points across scales," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:9:y:2019:i:11:d:10.1038_s41558-019-0583-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.