IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i9p1600-d414835.html
   My bibliography  Save this article

Numerical Non-Linear Modelling Algorithm Using Radial Kernels on Local Mesh Support

Author

Listed:
  • Francisco José Navarro-González

    (Department of Applied Mathematics, University of Alicante, 03690 Alicante, Spain)

  • Yolanda Villacampa

    (Department of Applied Mathematics, University of Alicante, 03690 Alicante, Spain)

  • Mónica Cortés-Molina

    (Department of Applied Mathematics, University of Alicante, 03690 Alicante, Spain)

  • Salvador Ivorra

    (Department of Civil Engineering, University of Alicante, 03690 Alicante, Spain)

Abstract

Estimation problems are frequent in several fields such as engineering, economics, and physics, etc. Linear and non-linear regression are powerful techniques based on optimizing an error defined over a dataset. Although they have a strong theoretical background, the need of supposing an analytical expression sometimes makes them impractical. Consequently, a group of other approaches and methodologies are available, from neural networks to random forest, etc. This work presents a new methodology to increase the number of available numerical techniques and corresponds to a natural evolution of the previous algorithms for regression based on finite elements developed by the authors improving the computational behavior and allowing the study of problems with a greater number of points. It possesses an interesting characteristic: Its direct and clear geometrical meaning. The modelling problem is presented from the point of view of the statistical analysis of the data noise considered as a random field. The goodness of fit of the generated models has been tested and compared with some other methodologies validating the results with some experimental campaigns obtained from bibliography in the engineering field, showing good approximation. In addition, a small variation on the data estimation algorithm allows studying overfitting in a model, that it is a problematic fact when numerical methods are used to model experimental values.

Suggested Citation

  • Francisco José Navarro-González & Yolanda Villacampa & Mónica Cortés-Molina & Salvador Ivorra, 2020. "Numerical Non-Linear Modelling Algorithm Using Radial Kernels on Local Mesh Support," Mathematics, MDPI, vol. 8(9), pages 1-27, September.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1600-:d:414835
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/9/1600/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/9/1600/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Machkouri, 2007. "Nonparametric Regression Estimation for Random Fields in a Fixed-Design," Statistical Inference for Stochastic Processes, Springer, vol. 10(1), pages 29-47, January.
    2. Oliveira, Victor De, 2000. "Bayesian prediction of clipped Gaussian random fields," Computational Statistics & Data Analysis, Elsevier, vol. 34(3), pages 299-314, September.
    3. Marc Hallin & Zudi Lu & Lanh T. Tran, 2004. "Local linear spatial regression," ULB Institutional Repository 2013/2131, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peligrad, Magda & Sang, Hailin & Xiao, Yimin & Yang, Guangyu, 2022. "Limit theorems for linear random fields with innovations in the domain of attraction of a stable law," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 596-621.
    2. El Machkouri, Mohamed & Es-Sebaiy, Khalifa & Ouassou, Idir, 2017. "On local linear regression for strongly mixing random fields," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 103-115.
    3. Hongxia Wang & Xiao Jin & Jianian Wang & Hongxia Hao, 2023. "Nonparametric Estimation for High-Dimensional Space Models Based on a Deep Neural Network," Mathematics, MDPI, vol. 11(18), pages 1-37, September.
    4. repec:esx:essedp:767 is not listed on IDEAS
    5. Liangjun Su & Xi Qu, 2017. "Specification Test for Spatial Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 572-584, October.
    6. Higgs, Megan Dailey & Hoeting, Jennifer A., 2010. "A clipped latent variable model for spatially correlated ordered categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1999-2011, August.
    7. Bastian Schäfer, 2021. "Bandwidth selection for the Local Polynomial Double Conditional Smoothing under Spatial ARMA Errors," Working Papers CIE 146, Paderborn University, CIE Center for International Economics.
    8. Hongxia Wang & Jinde Wang, 2009. "Estimation of the trend function for spatio-temporal models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 567-588.
    9. Pierrette Chagneau & Frédéric Mortier & Nicolas Picard & Jean-Noël Bacro, 2011. "A Hierarchical Bayesian Model for Spatial Prediction of Multivariate Non-Gaussian Random Fields," Biometrics, The International Biometric Society, vol. 67(1), pages 97-105, March.
    10. Benhenni, Karim & Su, Yingcai, 2016. "Optimal sampling designs for nonparametric estimation of spatial averages of random fields," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 341-351.
    11. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
    12. Li, Jiexiang & Tran, Lanh Tat, 2007. "Hazard rate estimation on random fields," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1337-1355, August.
    13. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11971, University Library of Munich, Germany.
    14. Ren, Xiaohang & Lu, Zudi & Cheng, Cheng & Shi, Yukun & Shen, Jian, 2019. "On dynamic linkages of the state natural gas markets in the USA: Evidence from an empirical spatio-temporal network quantile analysis," Energy Economics, Elsevier, vol. 80(C), pages 234-252.
    15. Rongrong Xu & Jinde Wang, 2008. "-estimation for spatial nonparametric regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(6), pages 523-537.
    16. Tang Qingguo & Chen Wenyu, 2022. "Estimation for partially linear additive regression with spatial data," Statistical Papers, Springer, vol. 63(6), pages 2041-2063, December.
    17. Zhengyan Lin & Degui Li & Jiti Gao, 2009. "Local Linear M‐estimation in non‐parametric spatial regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 286-314, May.
    18. V. Yu. Bogdanskii & O. I. Klesov & I. Molchanov, 2021. "Uniform Strong Law of Large Numbers," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 461-470, June.
    19. Zudi Lu & Dag Johan Steinskog & Dag Tjøstheim & Qiwei Yao, 2009. "Adaptively varying‐coefficient spatiotemporal models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 859-880, September.
    20. Berrett, Candace & Calder, Catherine A., 2012. "Data augmentation strategies for the Bayesian spatial probit regression model," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 478-490.
    21. Kangning Wang, 2018. "Variable selection for spatial semivarying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 323-351, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1600-:d:414835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.