IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v63y2022i6d10.1007_s00362-022-01326-8.html
   My bibliography  Save this article

Estimation for partially linear additive regression with spatial data

Author

Listed:
  • Tang Qingguo

    (Nanjing University of Science and Technology)

  • Chen Wenyu

    (Nanjing University of Science and Technology)

Abstract

This paper studies a partially linear additive regression with spatial data. A new estimation procedure is developed for estimating the unknown parameters and additive components in regression. The proposed method is suitable for high dimensional data, there is no need to solve the restricted minimization problem and no iterative algorithms are needed. Under mild regularity assumptions, the asymptotic distribution of the estimator of the unknown parameter vector is established, the asymptotic distributions of the estimators of the unknown functions are also derived. Finite sample properties of our procedures are studied through Monte Carlo simulations. A real data example about spatial soil data is used to illustrate our proposed methodology.

Suggested Citation

  • Tang Qingguo & Chen Wenyu, 2022. "Estimation for partially linear additive regression with spatial data," Statistical Papers, Springer, vol. 63(6), pages 2041-2063, December.
  • Handle: RePEc:spr:stpapr:v:63:y:2022:i:6:d:10.1007_s00362-022-01326-8
    DOI: 10.1007/s00362-022-01326-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-022-01326-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-022-01326-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siddhartha Nandy & Chae Young Lim & Tapabrata Maiti, 2017. "Additive model building for spatial regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 779-800, June.
    2. Al-Sulami, Dawlah & Jiang, Zhenyu & Lu, Zudi & Zhu, Jun, 2017. "Estimation for semiparametric nonlinear regression of irregularly located spatial time-series data," Econometrics and Statistics, Elsevier, vol. 2(C), pages 22-35.
    3. Athreya, Krishna B. & Pantula, Sastry G., 1986. "A note on strong mixing of ARMA processes," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 187-190, June.
    4. Lee, Y. K. & Choi, H. & Park, B. U. & Yu, K. S., 2004. "Local likelihood density estimation on random fields," Statistics & Probability Letters, Elsevier, vol. 68(4), pages 347-357, July.
    5. Hua Liang & Sally W. Thurston & David Ruppert & Tatiyana Apanasovich & Russ Hauser, 2008. "Additive partial linear models with measurement errors," Biometrika, Biometrika Trust, vol. 95(3), pages 667-678.
    6. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    7. Marc Hallin & Zudi Lu & Lanh T. Tran, 2001. "Density estimation for spatial linear processes," ULB Institutional Repository 2013/2109, ULB -- Universite Libre de Bruxelles.
    8. Tran, Lanh Tat, 1990. "Kernel density estimation on random fields," Journal of Multivariate Analysis, Elsevier, vol. 34(1), pages 37-53, July.
    9. Shan Yu & Guannan Wang & Li Wang & Chenhui Liu & Lijian Yang, 2020. "Estimation and Inference for Generalized Geoadditive Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 761-774, April.
    10. Marc Hallin & Zudi Lu & Lanh T. Tran, 2004. "Local linear spatial regression," ULB Institutional Repository 2013/2131, ULB -- Universite Libre de Bruxelles.
    11. Tim Ramsay, 2002. "Spline smoothing over difficult regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 307-319, May.
    12. Jing Yang & Hu Yang & Fang Lu, 2019. "Rank-based shrinkage estimation for identification in semiparametric additive models," Statistical Papers, Springer, vol. 60(4), pages 1255-1281, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang Qingguo, 2015. "Robust estimation for spatial semiparametric varying coefficient partially linear regression," Statistical Papers, Springer, vol. 56(4), pages 1137-1161, November.
    2. Zhengyan Lin & Degui Li & Jiti Gao, 2009. "Local Linear M‐estimation in non‐parametric spatial regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 286-314, May.
    3. Tang Qingguo, 2013. "B-spline estimation for semiparametric varying-coefficient partially linear regression with spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 361-378, June.
    4. Kuangyu Wen & Ximing Wu & David J. Leatham, 2021. "Spatially Smoothed Kernel Densities with Application to Crop Yield Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 349-366, September.
    5. Amiri, Aboubacar & Dabo-Niang, Sophie, 2018. "Density estimation over spatio-temporal data streams," Econometrics and Statistics, Elsevier, vol. 5(C), pages 148-170.
    6. Jia Chen & Li-Xin Zhang, 2010. "Local linear M-estimation for spatial processes in fixed-design models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(3), pages 319-340, May.
    7. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11979, University Library of Munich, Germany, revised Jul 2005.
    8. Tang Qingguo & Cheng Longsheng, 2010. "B-spline estimation for spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 197-217.
    9. Mohamed El Machkouri, 2011. "Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 73-84, February.
    10. Li, Linyuan, 2015. "Nonparametric adaptive density estimation on random fields using wavelet method," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 346-355.
    11. Zhenyu Jiang & Nengxiang Ling & Zudi Lu & Dag Tj⊘stheim & Qiang Zhang, 2020. "On bandwidth choice for spatial data density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 817-840, July.
    12. Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
    13. Kangning Wang, 2018. "Variable selection for spatial semivarying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 323-351, April.
    14. El Machkouri, Mohamed & Es-Sebaiy, Khalifa & Ouassou, Idir, 2017. "On local linear regression for strongly mixing random fields," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 103-115.
    15. Dong, C. & Li, S., 2021. "Specification Lasso and an Application in Financial Markets," Cambridge Working Papers in Economics 2139, Faculty of Economics, University of Cambridge.
    16. Chuan-hua Wei & Chunling Liu, 2012. "Statistical inference on semi-parametric partial linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 809-823, December.
    17. Michel Carbon, 2014. "Histograms for stationary linear random fields," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 245-266, October.
    18. Huang, Zhensheng & Pang, Zhen & Hu, Tao, 2013. "Testing structural change in partially linear single-index models with error-prone linear covariates," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 121-133.
    19. Gérard Biau & Benoît Cadre, 2004. "Nonparametric Spatial Prediction," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 327-349, October.
    20. Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004. "Kernel density estimation for spatial processes: the L1 theory," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:63:y:2022:i:6:d:10.1007_s00362-022-01326-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.