Optimal sampling designs for nonparametric estimation of spatial averages of random fields
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2015.11.010
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
- Gérard Biau & Benoît Cadre, 2004. "Nonparametric Spatial Prediction," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 327-349, October.
- Nerini, David & Monestiez, Pascal & Manté, Claude, 2010. "Cokriging for spatial functional data," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 409-418, February.
- Su, Yingcai & Cambanis, Stamatis, 1993. "Sampling designs for estimation of a random process," Stochastic Processes and their Applications, Elsevier, vol. 46(1), pages 47-89, May.
- Peter Robinson, 2011. "Asymptotic theory for nonparametric regression with spatial data," CeMMAP working papers CWP11/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Marc Hallin & Zudi Lu & Lanh T. Tran, 2004. "Local linear spatial regression," ULB Institutional Repository 2013/2131, ULB -- Universite Libre de Bruxelles.
- Su, Yingcai, 1997. "Estimation of random fields by piecewise constant estimators," Stochastic Processes and their Applications, Elsevier, vol. 71(2), pages 145-163, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Amiri, Aboubacar & Dabo-Niang, Sophie, 2018. "Density estimation over spatio-temporal data streams," Econometrics and Statistics, Elsevier, vol. 5(C), pages 148-170.
- Mustapha Rachdi & Ali Laksaci & Noriah M. Al-Kandari, 2022. "Expectile regression for spatial functional data analysis (sFDA)," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(5), pages 627-655, July.
- Liangjun Su & Xi Qu, 2017. "Specification Test for Spatial Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 572-584, October.
- Kuangyu Wen & Ximing Wu & David J. Leatham, 2021. "Spatially Smoothed Kernel Densities with Application to Crop Yield Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 349-366, September.
- Jenish, Nazgul, 2012. "Nonparametric spatial regression under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 167(1), pages 224-239.
- Kurisu, Daisuke, 2019. "On nonparametric inference for spatial regression models under domain expanding and infill asymptotics," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
- Zhenyu Jiang & Nengxiang Ling & Zudi Lu & Dag Tj⊘stheim & Qiang Zhang, 2020. "On bandwidth choice for spatial data density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 817-840, July.
- Bouabsa Wahiba, 2022. "Unform in Bandwith of the Conditional Distribution Function with Functional Explanatory Variable: The Case of Spatial Data with the K Nearest Neighbour Method," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 26(2), pages 30-46, June.
- Mohammed Attouch & Ali Laksaci & Nafissa Messabihi, 2017. "Nonparametric relative error regression for spatial random variables," Statistical Papers, Springer, vol. 58(4), pages 987-1008, December.
- Soutir Bandyopadhyay & Arnab Maity, 2018. "Asymptotic theory for varying coefficient regression models with dependent data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 745-759, August.
- Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
- Lee, Jungyoon & Robinson, Peter M., 2016. "Series estimation under cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 190(1), pages 1-17.
- Jungyoon Lee & Peter Robinson, 2016. "Series estimation under cross-sectional dependence," LSE Research Online Documents on Economics 63380, London School of Economics and Political Science, LSE Library.
- Hongxia Wang & Xiao Jin & Jianian Wang & Hongxia Hao, 2023. "Nonparametric Estimation for High-Dimensional Space Models Based on a Deep Neural Network," Mathematics, MDPI, vol. 11(18), pages 1-37, September.
- Hongxia Wang & Jinde Wang & Bo Huang, 2012. "Prediction for spatio-temporal models with autoregression in errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 217-244.
- Feng, Guohua & Gao, Jiti & Peng, Bin & Zhang, Xiaohui, 2017.
"A varying-coefficient panel data model with fixed effects: Theory and an application to US commercial banks,"
Journal of Econometrics, Elsevier, vol. 196(1), pages 68-82.
- Guohua Feng & Jiti Gao & Bin Peng & Xiaohui Zhang, 2015. "A Varying-Coefficient Panel Data Model with Fixed Effects: Theory and an Application to U.S. Commercial Banks," Monash Econometrics and Business Statistics Working Papers 9/15, Monash University, Department of Econometrics and Business Statistics.
- Gupta, Abhimanyu, 2018.
"Autoregressive spatial spectral estimates,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 80-95.
- Gupta, A, 2015. "Autoregressive Spatial Spectral Estimates," Economics Discussion Papers 23825, University of Essex, Department of Economics.
- Marcos Sanso-Navarro & Maria Vera-Cabello, 2015. "The effects of knowledge and innovation on regional growth: Nonparametric evidence," ERSA conference papers ersa15p949, European Regional Science Association.
- Min Seong Kim, 2021. "Robust Inference for Diffusion-Index Forecasts with Cross-Sectionally Dependent Data," Working papers 2021-04, University of Connecticut, Department of Economics.
- Gupta, Abhimanyu, 2023.
"Efficient closed-form estimation of large spatial autoregressions,"
Journal of Econometrics, Elsevier, vol. 232(1), pages 148-167.
- Abhimanyu Gupta, 2020. "Efficient closed-form estimation of large spatial autoregressions," Papers 2008.12395, arXiv.org, revised May 2021.
More about this item
Keywords
Nonparametric estimation; Random field; Sampling design; Spatial average;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:146:y:2016:i:c:p:341-351. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.