IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i8p1363-d399014.html
   My bibliography  Save this article

Construction of Reducible Stochastic Differential Equation Systems for Tree Height–Diameter Connections

Author

Listed:
  • Martynas Narmontas

    (Agriculture Academy, Vytautas Magnus University, 53361 Kaunas, Lithuania)

  • Petras Rupšys

    (Agriculture Academy, Vytautas Magnus University, 53361 Kaunas, Lithuania
    Department of Mathematics and Statistics, Vytautas Magnus University, 53361 Kaunas, Lithuania)

  • Edmundas Petrauskas

    (Agriculture Academy, Vytautas Magnus University, 53361 Kaunas, Lithuania)

Abstract

This study proposes a general bivariate stochastic differential equation model of population growth which includes random forces governing the dynamics of the bivariate distribution of size variables. The dynamics of the bivariate probability density function of the size variables in a population are described by the mixed-effect parameters Vasicek, Gompertz, Bertalanffy, and the gamma-type bivariate stochastic differential equations (SDEs). The newly derived bivariate probability density function and its marginal univariate, as well as the conditional univariate function, can be applied for the modeling of population attributes such as the mean value, quantiles, and much more. The models presented here are the basis for further developments toward the tree diameter–height and height–diameter relationships for general purpose in forest management. The present study experimentally confirms the effectiveness of using bivariate SDEs to reconstruct diameter–height and height–diameter relationships by using measurements obtained from mountain pine tree ( Pinus mugo Turra) species dataset in Lithuania.

Suggested Citation

  • Martynas Narmontas & Petras Rupšys & Edmundas Petrauskas, 2020. "Construction of Reducible Stochastic Differential Equation Systems for Tree Height–Diameter Connections," Mathematics, MDPI, vol. 8(8), pages 1-21, August.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1363-:d:399014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/8/1363/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/8/1363/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joe, Harry, 2008. "Accuracy of Laplace approximation for discrete response mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5066-5074, August.
    2. Masae Iwamoto Ishihara & Yasuo Konno & Kiyoshi Umeki & Yasuyuki Ohno & Kihachiro Kikuzawa, 2016. "A New Model for Size-Dependent Tree Growth in Forests," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun-Joo Cho & Sarah Brown-Schmidt & Woo-yeol Lee, 2018. "Autoregressive Generalized Linear Mixed Effect Models with Crossed Random Effects: An Application to Intensive Binary Time Series Eye-Tracking Data," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 751-771, September.
    2. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    3. Karl, Andrew T. & Yang, Yan & Lohr, Sharon L., 2014. "Computation of maximum likelihood estimates for multiresponse generalized linear mixed models with non-nested, correlated random effects," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 146-162.
    4. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    5. Minjeong Jeon & Sophia Rabe-Hesketh, 2012. "Profile-Likelihood Approach for Estimating Generalized Linear Mixed Models With Factor Structures," Journal of Educational and Behavioral Statistics, , vol. 37(4), pages 518-542, August.
    6. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    7. Wu, Jianmin & Bentler, Peter M., 2013. "Limited information estimation in binary factor analysis: A review and extension," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 392-403.
    8. Petras Rupšys, 2019. "Understanding the Evolution of Tree Size Diversity within the Multivariate Nonsymmetrical Diffusion Process and Information Measures," Mathematics, MDPI, vol. 7(8), pages 1-22, August.
    9. Bianconcini, Silvia & Cagnone, Silvia, 2023. "The dimension-wise quadrature estimation of dynamic latent variable models for count data," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    10. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
    11. Jenni Niku & David I. Warton & Francis K. C. Hui & Sara Taskinen, 2017. "Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 498-522, December.
    12. Giorgi, Emanuele & Diggle, Peter J., 2017. "PrevMap: An R Package for Prevalence Mapping," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i08).
    13. Bianconcini, Silvia & Cagnone, Silvia, 2012. "Estimation of generalized linear latent variable models via fully exponential Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 183-193.
    14. De Boeck, Paul & Partchev, Ivailo, 2012. "IRTrees: Tree-Based Item Response Models of the GLMM Family," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(c01).
    15. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    16. Silvia Cagnone & Francesco Bartolucci, 2017. "Adaptive Quadrature for Maximum Likelihood Estimation of a Class of Dynamic Latent Variable Models," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 599-622, April.
    17. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2017. "A Variational Maximization–Maximization Algorithm for Generalized Linear Mixed Models with Crossed Random Effects," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 693-716, September.
    18. Noh, Maengseok & Wu, Lang & Lee, Youngjo, 2012. "Hierarchical likelihood methods for nonlinear and generalized linear mixed models with missing data and measurement errors in covariates," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 42-51.
    19. Peter J. Diggle & Emanuele Giorgi, 2016. "Model-Based Geostatistics for Prevalence Mapping in Low-Resource Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1096-1120, July.
    20. Andersson, Björn & Jin, Shaobo & Zhang, Maoxin, 2023. "Fast estimation of multiple group generalized linear latent variable models for categorical observed variables," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1363-:d:399014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.