IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i8p1268-d393585.html
   My bibliography  Save this article

A Robust Algorithm for Classification and Diagnosis of Brain Disease Using Local Linear Approximation and Generalized Autoregressive Conditional Heteroscedasticity Model

Author

Listed:
  • Ali Hamzenejad

    (Department of Industrial engineering, Islamic Azad University Tehran North Branch, Tehran 1477893855, Iran)

  • Saeid Jafarzadeh Ghoushchi

    (Department of Industrial engineering, Urmia University of Technology, Urmia 5716693188, Iran)

  • Vahid Baradaran

    (Department of Industrial engineering, Islamic Azad University Tehran North Branch, Tehran 1477893855, Iran)

  • Abbas Mardani

    (Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
    Faculty of Business Administration, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam)

Abstract

Regions detection has an influence on the better treatment of brain tumors. Existing algorithms in the early detection of tumors are difficult to diagnose reliably. In this paper, we introduced a new robust algorithm using three methods for the classification of brain disease. The first method is Wavelet-Generalized Autoregressive Conditional Heteroscedasticity-K-Nearest Neighbor (W-GARCH-KNN). The Two-Dimensional Discrete Wavelet (2D-DWT) is utilized as the input images. The sub-banded wavelet coefficients are modeled using the GARCH model. The features of the GARCH model are considered as the main property vector. The second method is the Developed Wavelet-GARCH-KNN (D-WGK), which solves the incompatibility of the WGK method for the use of a low pass sub-band. The third method is the Wavelet Local Linear Approximation (LLA)-KNN, which we used for modeling the wavelet sub-bands. The extracted features were applied separately to determine the normal image or brain tumor based on classification methods. The classification was performed for the diagnosis of tumor types. The empirical results showed that the proposed algorithm obtained a high rate of classification and better practices than recently introduced algorithms while requiring a smaller number of classification features. According to the results, the Low-Low sub-bands are not adopted with the GARCH model; therefore, with the use of homomorphic filtering, this limitation is overcome. The results showed that the presented Local Linear (LL) method was better than the GARCH model for modeling wavelet sub-bands.

Suggested Citation

  • Ali Hamzenejad & Saeid Jafarzadeh Ghoushchi & Vahid Baradaran & Abbas Mardani, 2020. "A Robust Algorithm for Classification and Diagnosis of Brain Disease Using Local Linear Approximation and Generalized Autoregressive Conditional Heteroscedasticity Model," Mathematics, MDPI, vol. 8(8), pages 1-19, August.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1268-:d:393585
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/8/1268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/8/1268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daehan Won & Hasan Manzour & Wanpracha Chaovalitwongse, 2020. "Convex Optimization for Group Feature Selection in Networked Data," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 182-198, January.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Nicolas Gillis & Stephen A. Vavasis, 2018. "On the Complexity of Robust PCA and ℓ 1 -Norm Low-Rank Matrix Approximation," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1072-1084, November.
    4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    5. Johnstone, Iain M. & Lu, Arthur Yu, 2009. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 682-693.
    6. Ian Herszterg & Marcus Poggi & Thibaut Vidal, 2019. "Two-Dimensional Phase Unwrapping via Balanced Spanning Forests," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 527-543, July.
    7. Michèle Breton & Javier de Frutos, 2010. "Option Pricing Under GARCH Processes Using PDE Methods," Operations Research, INFORMS, vol. 58(4-part-2), pages 1148-1157, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaghoub Pourasad & Fausto Cavallaro, 2021. "A Novel Image Processing Approach to Enhancement and Compression of X-ray Images," IJERPH, MDPI, vol. 18(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Frutos & Víctor Gatón, 2017. "Chebyshev reduced basis function applied to option valuation," Computational Management Science, Springer, vol. 14(4), pages 465-491, October.
    2. Javier de Frutos & Victor Gaton, 2017. "Chebyshev Reduced Basis Function applied to Option Valuation," Papers 1701.01429, arXiv.org, revised Jun 2017.
    3. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    4. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    5. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    6. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    7. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    8. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    9. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    10. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    11. Chang, Chia-Lin & Hsu, Hui-Kuang, 2013. "Modelling Volatility Size Effects for Firm Performance: The Impact of Chinese Tourists to Taiwan," MPRA Paper 45691, University Library of Munich, Germany.
    12. Budi Setiawan & Marwa Ben Abdallah & Maria Fekete-Farkas & Robert Jeyakumar Nathan & Zoltan Zeman, 2021. "GARCH (1,1) Models and Analysis of Stock Market Turmoil during COVID-19 Outbreak in an Emerging and Developed Economy," JRFM, MDPI, vol. 14(12), pages 1-19, December.
    13. Chia-Lin Chang & Michael McAleer, 2017. "A Simple Test for Causality in Volatility," Econometrics, MDPI, vol. 5(1), pages 1-5, March.
    14. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    15. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    16. SILVESTRINI, Andrea & VEREDAS, David, 2005. "Temporal aggregation of univariate linear time series models," LIDAM Discussion Papers CORE 2005059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. repec:wyi:journl:002087 is not listed on IDEAS
    18. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    19. Blazsek, Szabolcs & Escribano, Alvaro, 2023. "Score-driven threshold ice-age models: Benchmark models for long-run climate forecasts," Energy Economics, Elsevier, vol. 118(C).
    20. Beaulieu, Marie-Claude, 1995. "Rendements boursiers et inflation," L'Actualité Economique, Société Canadienne de Science Economique, vol. 71(4), pages 455-480, décembre.
    21. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1268-:d:393585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.