IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v14y2017i4d10.1007_s10287-017-0287-4.html
   My bibliography  Save this article

Chebyshev reduced basis function applied to option valuation

Author

Listed:
  • Javier Frutos

    (Universidad de Valladolid)

  • Víctor Gatón

    (Universidad de Valladolid)

Abstract

We present a numerical method for the frequent pricing of financial derivatives that depends on a large number of variables. The method is based on the construction of a polynomial basis to interpolate the value function of the problem by means of a hierarchical orthogonalization process that allows to reduce the number of degrees of freedom needed to have an accurate representation of the value function. In the paper we consider, as an example, a GARCH model that depends on eight parameters and show that a very large number of contracts for different maturities and asset and parameters values can be valued in a small computational time with the proposed procedure. In particular the method is applied to the problem of model calibration. The method is easily generalizable to be used with other models or problems.

Suggested Citation

  • Javier Frutos & Víctor Gatón, 2017. "Chebyshev reduced basis function applied to option valuation," Computational Management Science, Springer, vol. 14(4), pages 465-491, October.
  • Handle: RePEc:spr:comgts:v:14:y:2017:i:4:d:10.1007_s10287-017-0287-4
    DOI: 10.1007/s10287-017-0287-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-017-0287-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-017-0287-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    2. Jan Kallsen & Murad S. Taqqu, 1998. "Option Pricing in ARCH‐type Models," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 13-26, January.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Michèle Breton & Javier de Frutos, 2010. "Option Pricing Under GARCH Processes Using PDE Methods," Operations Research, INFORMS, vol. 58(4-part-2), pages 1148-1157, August.
    6. Higgins, Matthew L & Bera, Anil K, 1992. "A Class of Nonlinear ARCH Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 137-158, February.
    7. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
    8. Maciej Balajewicz & Jari Toivanen, 2016. "Reduced Order Models for Pricing European and American Options under Stochastic Volatility and Jump-Diffusion Models," Papers 1612.00402, arXiv.org.
    9. Duan, Jin-Chuan & Zhang, Hua, 2001. "Pricing Hang Seng Index options around the Asian financial crisis - A GARCH approach," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1989-2014, November.
    10. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    11. Julien Hok & Tat Lung Chan, 2016. "Option pricing with Legendre polynomials," Papers 1610.03086, arXiv.org, revised Mar 2017.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Andrew Papanicolaou & Ronnie Sircar, 2014. "A regime-switching Heston model for VIX and S&P 500 implied volatilities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1811-1827, October.
    14. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    15. Yuh-Dauh Lyuu & Chi-Ning Wu, 2005. "On accurate and provably efficient GARCH option pricing algorithms," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 181-198.
    16. Jin-Chuan Duan & Jean-Guy Simonato, 1998. "Empirical Martingale Simulation for Asset Prices," Management Science, INFORMS, vol. 44(9), pages 1218-1233, September.
    17. Peter Ritchken & Rob Trevor, 1999. "Pricing Options under Generalized GARCH and Stochastic Volatility Processes," Journal of Finance, American Finance Association, vol. 54(1), pages 377-402, February.
    18. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al–Zhour, Zeyad & Barfeie, Mahdiar & Soleymani, Fazlollah & Tohidi, Emran, 2019. "A computational method to price with transaction costs under the nonlinear Black–Scholes model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 291-301.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hatem Ben-Ameur & Michèle Breton & Juan-Manuel Martinez, 2009. "Dynamic Programming Approach for Valuing Options in the GARCH Model," Management Science, INFORMS, vol. 55(2), pages 252-266, February.
    2. Michèle Breton & Javier de Frutos, 2010. "Option Pricing Under GARCH Processes Using PDE Methods," Operations Research, INFORMS, vol. 58(4-part-2), pages 1148-1157, August.
    3. Javier de Frutos & Victor Gaton, 2017. "Chebyshev Reduced Basis Function applied to Option Valuation," Papers 1701.01429, arXiv.org, revised Jun 2017.
    4. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    5. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    6. Len, Angel & Vaello-Sebasti, Antoni, 2009. "American GARCH employee stock option valuation," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1129-1143, June.
    7. Duan, Jin-Chuan & Simonato, Jean-Guy, 2001. "American option pricing under GARCH by a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 25(11), pages 1689-1718, November.
    8. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    9. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    10. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    11. Peter Christoffersen & Kris Jacobs, 2002. "Which Volatility Model for Option Valuation?," CIRANO Working Papers 2002s-33, CIRANO.
    12. Zhang, Yuanyuan & Zhang, Qian & Wang, Zerong & Wang, Qi, 2024. "Option valuation via nonaffine dynamics with realized volatility," Journal of Empirical Finance, Elsevier, vol. 77(C).
    13. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    14. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
    15. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    16. Lin, Shin-Hung & Huang, Hung-Hsi & Li, Sheng-Han, 2015. "Option pricing under truncated Gram–Charlier expansion," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 77-97.
    17. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    18. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    19. Byun, Suk Joon & Jeon, Byoung Hyun & Min, Byungsun & Yoon, Sun-Joong, 2015. "The role of the variance premium in Jump-GARCH option pricing models," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 38-56.
    20. Bing-Huei Lin & Mao-Wei Hung & Jr-Yan Wang & Ping-Da Wu, 2013. "A lattice model for option pricing under GARCH-jump processes," Review of Derivatives Research, Springer, vol. 16(3), pages 295-329, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:14:y:2017:i:4:d:10.1007_s10287-017-0287-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.