IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i5p657-d350627.html
   My bibliography  Save this article

Differentiation of the Mittag-Leffler Functions with Respect to Parameters in the Laplace Transform Approach

Author

Listed:
  • Alexander Apelblat

    (Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105, Israel)

Abstract

In this work, properties of one- or two-parameter Mittag-Leffler functions are derived using the Laplace transform approach. It is demonstrated that manipulations with the pair direct–inverse transform makes it far more easy than previous methods to derive known and new properties of the Mittag-Leffler functions. Moreover, it is shown that sums of infinite series of the Mittag-Leffler functions can be expressed as convolution integrals, while the derivatives of the Mittag-Leffler functions with respect to their parameters are expressible as double convolution integrals. The derivatives can also be obtained from integral representations of the Mittag-Leffler functions. On the other hand, direct differentiation of the Mittag-Leffler functions with respect to parameters produces an infinite power series, whose coefficients are quotients of the digamma and gamma functions. Closed forms of these series can be derived when the parameters are set to be integers.

Suggested Citation

  • Alexander Apelblat, 2020. "Differentiation of the Mittag-Leffler Functions with Respect to Parameters in the Laplace Transform Approach," Mathematics, MDPI, vol. 8(5), pages 1-22, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:657-:d:350627
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/5/657/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/5/657/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sandev, Trifce & Tomovski, Živorad & Dubbeldam, Johan L.A., 2011. "Generalized Langevin equation with a three parameter Mittag-Leffler noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3627-3636.
    2. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
    3. Biyajima, Minoru & Mizoguchi, Takuya & Suzuki, Naomichi, 2015. "A new blackbody radiation law based on fractional calculus and its application to NASA COBE data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 440(C), pages 129-138.
    4. Agahi, Hamzeh & Alipour, Mohsen, 2019. "Mittag-Leffler-Gaussian distribution: Theory and application to real data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 227-235.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Luis González-Santander & Fernando Sánchez Lasheras, 2022. "Finite and Infinite Hypergeometric Sums Involving the Digamma Function," Mathematics, MDPI, vol. 10(16), pages 1-12, August.
    2. Fabio Vanni & David Lambert, 2024. "Aging Renewal Point Processes and Exchangeability of Event Times," Mathematics, MDPI, vol. 12(10), pages 1-27, May.
    3. Alexander Apelblat & Juan Luis González-Santander, 2021. "The Integral Mittag-Leffler, Whittaker and Wright Functions," Mathematics, MDPI, vol. 9(24), pages 1-34, December.
    4. Juan Luis González-Santander & Fernando Sánchez Lasheras, 2023. "Sums Involving the Digamma Function Connected to the Incomplete Beta Function and the Bessel functions," Mathematics, MDPI, vol. 11(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Virginia Kiryakova & Jordanka Paneva-Konovska, 2024. "Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey," Mathematics, MDPI, vol. 12(2), pages 1-39, January.
    2. Edgardo Alvarez & Carlos Lizama, 2020. "The Super-Diffusive Singular Perturbation Problem," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    3. Sweilam, N.H. & El-Sakout, D.M. & Muttardi, M.M., 2020. "Numerical study for time fractional stochastic semi linear advection diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Ravi Agarwal & Snezhana Hristova & Donal O’Regan & Peter Kopanov, 2020. "p -Moment Mittag–Leffler Stability of Riemann–Liouville Fractional Differential Equations with Random Impulses," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    5. Agahi, Hamzeh & Khalili, Monavar, 2020. "Truncated Mittag-Leffler distribution and superstatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    6. Rakesh K. Parmar, 2015. "A Class of Extended Mittag–Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus," Mathematics, MDPI, vol. 3(4), pages 1-14, November.
    7. Nikolai Leonenko & Ely Merzbach, 2015. "Fractional Poisson Fields," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 155-168, March.
    8. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    9. Xiong, Xiangtuan & Xue, Xuemin, 2019. "A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 292-303.
    10. Soma Dhar & Lipi B. Mahanta & Kishore Kumar Das, 2019. "Formulation Of The Simple Markovian Model Using Fractional Calculus Approach And Its Application To Analysis Of Queue Behaviour Of Severe Patients," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 117-129, March.
    11. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    12. Katarzyna Górska & Andrzej Horzela, 2021. "Non-Debye Relaxations: Two Types of Memories and Their Stieltjes Character," Mathematics, MDPI, vol. 9(5), pages 1-13, February.
    13. Lini Qiu & Guitian He & Yun Peng & Huijun Lv & Yujie Tang, 2023. "Average amplitudes analysis for a phenomenological model under hydrodynamic interactions with periodic perturbation and multiplicative trichotomous noise," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(4), pages 1-20, April.
    14. Slawomir Blasiak, 2021. "Heat Transfer Analysis for Non-Contacting Mechanical Face Seals Using the Variable-Order Derivative Approach," Energies, MDPI, vol. 14(17), pages 1-13, September.
    15. Pece Trajanovski & Petar Jolakoski & Ljupco Kocarev & Trifce Sandev, 2023. "Ornstein–Uhlenbeck Process on Three-Dimensional Comb under Stochastic Resetting," Mathematics, MDPI, vol. 11(16), pages 1-28, August.
    16. Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.
    17. Goswami, Koushik, 2021. "Work fluctuations in a generalized Gaussian active bath," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    18. Meghadri Das & Guruprasad Samanta & Manuel De la Sen, 2021. "Stability Analysis and Optimal Control of a Fractional Order Synthetic Drugs Transmission Model," Mathematics, MDPI, vol. 9(7), pages 1-34, March.
    19. Virginia Kiryakova, 2021. "A Guide to Special Functions in Fractional Calculus," Mathematics, MDPI, vol. 9(1), pages 1-40, January.
    20. Murat A. Sultanov & Durdimurod K. Durdiev & Askar A. Rahmonov, 2021. "Construction of an Explicit Solution of a Time-Fractional Multidimensional Differential Equation," Mathematics, MDPI, vol. 9(17), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:657-:d:350627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.