Mittag-Leffler-Gaussian distribution: Theory and application to real data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2018.07.014
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- R. Pillai, 1990. "On Mittag-Leffler functions and related distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(1), pages 157-161, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Haubold, Hans J. & Kabeer, Ashik A. & Kumar, Dilip, 2023. "Analytic forms of thermonuclear functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
- Alexander Apelblat, 2020. "Differentiation of the Mittag-Leffler Functions with Respect to Parameters in the Laplace Transform Approach," Mathematics, MDPI, vol. 8(5), pages 1-22, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Agahi, Hamzeh & Khalili, Monavar, 2020. "Truncated Mittag-Leffler distribution and superstatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
- Christoph, Gerd & Schreiber, Karina, 2000. "Scaled Sibuya distribution and discrete self-decomposability," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 181-187, June.
- Zhang, Zhehao, 2018. "Renewal sums under mixtures of exponentials," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 281-301.
- Emad-Eldin Aly & Nadjib Bouzar, 2000. "On Geometric Infinite Divisibility and Stability," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(4), pages 790-799, December.
- Levy, Edmond, 2021. "On the density for sums of independent Mittag-Leffler variates with common order," Statistics & Probability Letters, Elsevier, vol. 179(C).
- Subrata Chakraborty & S. H. Ong, 2017. "Mittag - Leffler function distribution - a new generalization of hyper-Poisson distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-17, December.
- Kozubowski, Tomasz J., 2005. "A note on self-decomposability of stable process subordinated to self-decomposable subordinator," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 89-91, August.
- K. K. Kataria & P. Vellaisamy, 2019. "On Distributions of Certain State-Dependent Fractional Point Processes," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1554-1580, September.
- Cirillo, Pasquale & Hüsler, Jürg, 2009. "An urn approach to generalized extreme shock models," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 969-976, April.
- Chen, Wen & Liang, Yingjie, 2017. "New methodologies in fractional and fractal derivatives modeling," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 72-77.
- Pakes, Anthony G., 1998. "Mixture representations for symmetric generalized Linnik laws," Statistics & Probability Letters, Elsevier, vol. 37(3), pages 213-221, March.
- Sánchez, Ewin, 2019. "Burr type-XII as a superstatistical stationary distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 443-446.
- Rahma Abid & Célestin C. Kokonendji & Afif Masmoudi, 2020. "Geometric Tweedie regression models for continuous and semicontinuous data with variation phenomenon," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 33-58, March.
- Kozubowski, Tomasz J., 1998. "Mixture representation of Linnik distribution revisited," Statistics & Probability Letters, Elsevier, vol. 38(2), pages 157-160, June.
- Kozubowski, Tomasz J., 2005. "A note on self-decomposability of stable process subordinated to self-decomposable subordinator," Statistics & Probability Letters, Elsevier, vol. 73(4), pages 343-345, July.
- Zhang, Zhehao, 2019. "On the stochastic equation L(Z)=L[V(X+Z)] and properties of Mittag–Leffler distributions," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 365-376.
- Pakes, Anthony G., 1995. "Characterization of discrete laws via mixed sums and Markov branching processes," Stochastic Processes and their Applications, Elsevier, vol. 55(2), pages 285-300, February.
- Browne, Sid & Bunge, John, 1995. "Random record processes and state dependent thinning," Stochastic Processes and their Applications, Elsevier, vol. 55(1), pages 131-142, January.
- Cho, Soobin & Kim, Panki, 2021. "Estimates on transition densities of subordinators with jumping density decaying in mixed polynomial orders," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 229-279.
- Kozubowski, Tomasz J. & Meerschaert, Mark M., 2009. "A bivariate infinitely divisible distribution with exponential and Mittag-Leffler marginals," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1596-1601, July.
More about this item
Keywords
One-parametric Mittag-Leffler function; Two-parametric Mittag-Leffler function; Mittag-Leffler-Gaussian distribution; Numerical computation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:156:y:2019:i:c:p:227-235. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.