IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v156y2019icp227-235.html
   My bibliography  Save this article

Mittag-Leffler-Gaussian distribution: Theory and application to real data

Author

Listed:
  • Agahi, Hamzeh
  • Alipour, Mohsen

Abstract

In this paper, we introduce the class of Mittag-Leffler-Gaussian distribution which is more flexible than the Gaussian distribution. Some properties of this class are investigated. Then, for two real data sets, the model is examined using the Akaike, Bayesian and small sample Akaike information criteria.

Suggested Citation

  • Agahi, Hamzeh & Alipour, Mohsen, 2019. "Mittag-Leffler-Gaussian distribution: Theory and application to real data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 227-235.
  • Handle: RePEc:eee:matcom:v:156:y:2019:i:c:p:227-235
    DOI: 10.1016/j.matcom.2018.07.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475418302015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2018.07.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Pillai, 1990. "On Mittag-Leffler functions and related distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(1), pages 157-161, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haubold, Hans J. & Kabeer, Ashik A. & Kumar, Dilip, 2023. "Analytic forms of thermonuclear functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    2. Alexander Apelblat, 2020. "Differentiation of the Mittag-Leffler Functions with Respect to Parameters in the Laplace Transform Approach," Mathematics, MDPI, vol. 8(5), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agahi, Hamzeh & Khalili, Monavar, 2020. "Truncated Mittag-Leffler distribution and superstatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    2. Christoph, Gerd & Schreiber, Karina, 2000. "Scaled Sibuya distribution and discrete self-decomposability," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 181-187, June.
    3. Zhang, Zhehao, 2018. "Renewal sums under mixtures of exponentials," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 281-301.
    4. Emad-Eldin Aly & Nadjib Bouzar, 2000. "On Geometric Infinite Divisibility and Stability," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(4), pages 790-799, December.
    5. Levy, Edmond, 2021. "On the density for sums of independent Mittag-Leffler variates with common order," Statistics & Probability Letters, Elsevier, vol. 179(C).
    6. Subrata Chakraborty & S. H. Ong, 2017. "Mittag - Leffler function distribution - a new generalization of hyper-Poisson distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-17, December.
    7. Kozubowski, Tomasz J., 2005. "A note on self-decomposability of stable process subordinated to self-decomposable subordinator," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 89-91, August.
    8. K. K. Kataria & P. Vellaisamy, 2019. "On Distributions of Certain State-Dependent Fractional Point Processes," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1554-1580, September.
    9. Cirillo, Pasquale & Hüsler, Jürg, 2009. "An urn approach to generalized extreme shock models," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 969-976, April.
    10. Chen, Wen & Liang, Yingjie, 2017. "New methodologies in fractional and fractal derivatives modeling," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 72-77.
    11. Pakes, Anthony G., 1998. "Mixture representations for symmetric generalized Linnik laws," Statistics & Probability Letters, Elsevier, vol. 37(3), pages 213-221, March.
    12. Sánchez, Ewin, 2019. "Burr type-XII as a superstatistical stationary distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 443-446.
    13. Rahma Abid & Célestin C. Kokonendji & Afif Masmoudi, 2020. "Geometric Tweedie regression models for continuous and semicontinuous data with variation phenomenon," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 33-58, March.
    14. Kozubowski, Tomasz J., 1998. "Mixture representation of Linnik distribution revisited," Statistics & Probability Letters, Elsevier, vol. 38(2), pages 157-160, June.
    15. Kozubowski, Tomasz J., 2005. "A note on self-decomposability of stable process subordinated to self-decomposable subordinator," Statistics & Probability Letters, Elsevier, vol. 73(4), pages 343-345, July.
    16. Zhang, Zhehao, 2019. "On the stochastic equation L(Z)=L[V(X+Z)] and properties of Mittag–Leffler distributions," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 365-376.
    17. Pakes, Anthony G., 1995. "Characterization of discrete laws via mixed sums and Markov branching processes," Stochastic Processes and their Applications, Elsevier, vol. 55(2), pages 285-300, February.
    18. Browne, Sid & Bunge, John, 1995. "Random record processes and state dependent thinning," Stochastic Processes and their Applications, Elsevier, vol. 55(1), pages 131-142, January.
    19. Cho, Soobin & Kim, Panki, 2021. "Estimates on transition densities of subordinators with jumping density decaying in mixed polynomial orders," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 229-279.
    20. Kozubowski, Tomasz J. & Meerschaert, Mark M., 2009. "A bivariate infinitely divisible distribution with exponential and Mittag-Leffler marginals," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1596-1601, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:156:y:2019:i:c:p:227-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.