IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i10p1529-d1394477.html
   My bibliography  Save this article

Aging Renewal Point Processes and Exchangeability of Event Times

Author

Listed:
  • Fabio Vanni

    (Department of Economics, University of Insubria, 21100 Varese, Italy)

  • David Lambert

    (Department of Mathematics, University of North Texas, Denton, TX 76203-5017, USA)

Abstract

In this paper, we investigate the impact of latency aging on exchangeable (invariant under permutation of indices) inter-arrival times arising from mixed renewal point processes (statistical mixtures of point processes with renewal inter-arrival times) and explore the implications for reliability and survival analysis. We prove that aging preserves the exchangeability of inter-arrival times. Our data analysis, which includes both surrogate data and a Bayesian approach to high-frequency currency exchange-rate data, shows how aging impacts key survival analysis metrics such as failure survival, renewal, and hazard rate functions.

Suggested Citation

  • Fabio Vanni & David Lambert, 2024. "Aging Renewal Point Processes and Exchangeability of Event Times," Mathematics, MDPI, vol. 12(10), pages 1-26, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1529-:d:1394477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/10/1529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/10/1529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. Jay. Kerns & Gábor J. Székely, 2006. "Definetti’s Theorem for Abstract Finite Exchangeable Sequences," Journal of Theoretical Probability, Springer, vol. 19(3), pages 589-608, December.
    2. Eric M. Aldrich & Indra Heckenbach & Gregory Laughlin, 2014. "The Random Walk of High Frequency Trading," Papers 1408.3650, arXiv.org, revised Aug 2014.
    3. Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000. "Fractional calculus and continuous-time finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
    4. Pensri Pramukkul & Adam Svenkeson & Paolo Grigolini & Mauro Bologna & Bruce West, 2013. "Complexity and the Fractional Calculus," Advances in Mathematical Physics, Hindawi, vol. 2013, pages 1-7, April.
    5. John J. McCall, 1988. "An Introduction to Exchangeability and Its Economic Applications," UCLA Economics Working Papers 526, UCLA Department of Economics.
    6. Stephen J. Taylor, 1994. "Modeling Stochastic Volatility: A Review And Comparative Study," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 183-204, April.
    7. Chiara Pederzoli, 2006. "Stochastic Volatility and GARCH: a Comparison Based on UK Stock Data," The European Journal of Finance, Taylor & Francis Journals, vol. 12(1), pages 41-59.
    8. Alexander Apelblat, 2020. "Differentiation of the Mittag-Leffler Functions with Respect to Parameters in the Laplace Transform Approach," Mathematics, MDPI, vol. 8(5), pages 1-22, April.
    9. Katz, Y.A. & Tian, L., 2014. "Superstatistical fluctuations in time series of leverage returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 326-331.
    10. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    11. M. Constantin & S. Das Sarma, 2005. "Volatility, Persistence, and Survival in Financial Markets," Papers physics/0507020, arXiv.org, revised Nov 2005.
    12. Ji Hwan Cha & Maxim Finkelstein, 2018. "Point Processes for Reliability Analysis," Springer Series in Reliability Engineering, Springer, number 978-3-319-73540-5, April.
    13. Allegrini, P. & Barbi, F. & Grigolini, P. & Paradisi, P., 2007. "Aging and renewal events in sporadically modulated systems," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 11-18.
    14. Uchiyama, Yusuke & Kadoya, Takanori, 2019. "Superstatistics with cut-off tails for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marseguerra, Marzio & Zoia, Andrea, 2008. "Pre-asymptotic corrections to fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2668-2674.
    2. Zheng, Guang-Hui & Zhang, Quan-Guo, 2018. "Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 148(C), pages 37-47.
    3. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    4. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
    5. Saberi Zafarghandi, Fahimeh & Mohammadi, Maryam & Babolian, Esmail & Javadi, Shahnam, 2019. "Radial basis functions method for solving the fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 224-246.
    6. G. Fern'andez-Anaya & L. A. Quezada-T'ellez & B. Nu~nez-Zavala & D. Brun-Battistini, 2019. "Katugampola Generalized Conformal Derivative Approach to Inada Conditions and Solow-Swan Economic Growth Model," Papers 1907.00130, arXiv.org.
    7. Ya Qin & Adnan Khan & Izaz Ali & Maysaa Al Qurashi & Hassan Khan & Rasool Shah & Dumitru Baleanu, 2020. "An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems," Energies, MDPI, vol. 13(11), pages 1-14, May.
    8. Scalas, Enrico & Gallegati, Mauro & Guerci, Eric & Mas, David & Tedeschi, Alessandra, 2006. "Growth and allocation of resources in economics: The agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 86-90.
    9. Jorge E. Macías-Díaz, 2019. "Numerically Efficient Methods for Variational Fractional Wave Equations: An Explicit Four-Step Scheme," Mathematics, MDPI, vol. 7(11), pages 1-27, November.
    10. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2022. "Approximate Solution of Nonlinear Time-Fractional PDEs by Laplace Residual Power Series Method," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    12. Hayashi, Katsuhiko & Kaizoji, Taisei & Pichl, Lukáš, 2007. "Correlation patterns of NIKKEI index constituents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 16-21.
    13. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    14. Enrico Scalas & Rudolf Gorenflo & Hugh Luckock & Francesco Mainardi & Maurizio Mantelli & Marco Raberto, 2004. "Anomalous waiting times in high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 695-702.
    15. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    16. Gu, Hui & Liang, Jin-Rong & Zhang, Yun-Xiu, 2012. "Time-changed geometric fractional Brownian motion and option pricing with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3971-3977.
    17. Ali Balcı, Mehmet, 2017. "Time fractional capital-induced labor migration model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 91-98.
    18. Berardi, Luca & Serva, Maurizio, 2005. "Time and foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 403-412.
    19. Masoliver, Jaume & Montero, Miquel & Perello, Josep & Weiss, George H., 2006. "The continuous time random walk formalism in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 577-598, December.
    20. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1529-:d:1394477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.