IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i4p406-d502039.html
   My bibliography  Save this article

Functional Modeling of High-Dimensional Data: A Manifold Learning Approach

Author

Listed:
  • Harold A. Hernández-Roig

    (Department of Statistics, Universidad Carlos III de Madrid, Calle Madrid, 126, 28903 Getafe, Madrid, Spain
    uc3m-Santander Big Data Institute, Calle Madrid, 135, 28903 Getafe, Madrid, Spain)

  • M. Carmen Aguilera-Morillo

    (uc3m-Santander Big Data Institute, Calle Madrid, 135, 28903 Getafe, Madrid, Spain
    Department of Applied Statistics and Operational Research, and Quality, Universitat Politècnica de València, Camí de Vera, s/n, 46022 València, Spain)

  • Rosa E. Lillo

    (Department of Statistics, Universidad Carlos III de Madrid, Calle Madrid, 126, 28903 Getafe, Madrid, Spain
    uc3m-Santander Big Data Institute, Calle Madrid, 135, 28903 Getafe, Madrid, Spain)

Abstract

This paper introduces stringing via Manifold Learning (ML-stringing), an alternative to the original stringing based on Unidimensional Scaling (UDS). Our proposal is framed within a wider class of methods that map high-dimensional observations to the infinite space of functions, allowing the use of Functional Data Analysis (FDA). Stringing handles general high-dimensional data as scrambled realizations of an unknown stochastic process. Therefore, the essential feature of the method is a rearrangement of the observed values. Motivated by the linear nature of UDS and the increasing number of applications to biosciences (e.g., functional modeling of gene expression arrays and single nucleotide polymorphisms, or the classification of neuroimages) we aim to recover more complex relations between predictors through ML. In simulation studies, it is shown that ML-stringing achieves higher-quality orderings and that, in general, this leads to improvements in the functional representation and modeling of the data. The versatility of our method is also illustrated with an application to a colon cancer study that deals with high-dimensional gene expression arrays. This paper shows that ML-stringing is a feasible alternative to the UDS-based version. Also, it opens a window to new contributions to the field of FDA and the study of high-dimensional data.

Suggested Citation

  • Harold A. Hernández-Roig & M. Carmen Aguilera-Morillo & Rosa E. Lillo, 2021. "Functional Modeling of High-Dimensional Data: A Manifold Learning Approach," Mathematics, MDPI, vol. 9(4), pages 1-22, February.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:406-:d:502039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/4/406/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/4/406/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Lisha & Buja, Andreas, 2009. "Local Multidimensional Scaling for Nonlinear Dimension Reduction, Graph Drawing, and Proximity Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 209-219.
    2. Kehui Chen & Xiaoke Zhang & Alexander Petersen & Hans-Georg Müller, 2017. "Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 582-604, December.
    3. Hahsler, Michael, 2017. "An experimental comparison of seriation methods for one-mode two-way data," European Journal of Operational Research, Elsevier, vol. 257(1), pages 133-143.
    4. Chen, Kun & Chen, Kehui & Müller, Hans-Georg & Wang, Jane-Ling, 2011. "Stringing High-Dimensional Data for Functional Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 275-284.
    5. M. Aguilera-Morillo & Ana Aguilera & Manuel Escabias & Mariano Valderrama, 2013. "Penalized spline approaches for functional logit regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 251-277, June.
    6. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    7. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    8. Vivek Bagaria & Jian Ding & David Tse & Yihong Wu & Jiaming Xu, 2020. "Hidden Hamiltonian Cycle Recovery via Linear Programming," Operations Research, INFORMS, vol. 68(1), pages 53-70, January.
    9. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    10. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    11. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Xiaolei & Paynabar, Kamran & Gebraeel, Nagi, 2017. "Multistream sensor fusion-based prognostics model for systems with single failure modes," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 322-331.
    2. Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
    3. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    4. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    5. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    6. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    7. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    8. Immanuel Bayer & Philip Groth & Sebastian Schneckener, 2013. "Prediction Errors in Learning Drug Response from Gene Expression Data – Influence of Labeling, Sample Size, and Machine Learning Algorithm," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-13, July.
    9. Mostafa Rezaei & Ivor Cribben & Michele Samorani, 2021. "A clustering-based feature selection method for automatically generated relational attributes," Annals of Operations Research, Springer, vol. 303(1), pages 233-263, August.
    10. Gustavo A. Alonso-Silverio & Víctor Francisco-García & Iris P. Guzmán-Guzmán & Elías Ventura-Molina & Antonio Alarcón-Paredes, 2021. "Toward Non-Invasive Estimation of Blood Glucose Concentration: A Comparative Performance," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    11. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    12. Karim Barigou & Stéphane Loisel & Yahia Salhi, 2020. "Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect," Risks, MDPI, vol. 9(1), pages 1-18, December.
    13. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Polish Statistical Association, vol. 18(1), pages 91-114, March.
    14. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    15. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    16. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    18. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    19. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    20. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:406-:d:502039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.