IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v340y2019icp221-233.html
   My bibliography  Save this article

Non-fragile state estimation for delayed fractional-order memristive neural networks

Author

Listed:
  • Li, Ruoxia
  • Gao, Xingbao
  • Cao, Jinde

Abstract

The issue of non-fragile estimation for fractional-order memristive system is provided in this paper. By endowing the Lyapunov technique, the corresponding works that ensuring the globally asymptotic stability of the error model are presented, which can be calculated efficiently. In the end, the analytical methods are voiced by two simulations.

Suggested Citation

  • Li, Ruoxia & Gao, Xingbao & Cao, Jinde, 2019. "Non-fragile state estimation for delayed fractional-order memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 221-233.
  • Handle: RePEc:eee:apmaco:v:340:y:2019:i:c:p:221-233
    DOI: 10.1016/j.amc.2018.08.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318307458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.08.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gallegos, Javier A. & Duarte-Mermoud, Manuel A., 2016. "On the Lyapunov theory for fractional order systems," Applied Mathematics and Computation, Elsevier, vol. 287, pages 161-170.
    2. Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun, 2017. "Mittag–Leffler stability analysis of nonlinear fractional-order systems with impulses," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 416-422.
    3. Lien, Chang-Hua, 2007. "H∞ non-fragile observer-based controls of dynamical systems via LMI optimization approach," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 428-436.
    4. Li, Ruoxia & Cao, Jinde, 2016. "Stability analysis of reaction-diffusion uncertain memristive neural networks with time-varying delays and leakage term," Applied Mathematics and Computation, Elsevier, vol. 278(C), pages 54-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ruoxia & Gao, Xingbao & Cao, Jinde, 2019. "Quasi-state estimation and quasi-synchronization control of quaternion-valued fractional-order fuzzy memristive neural networks: Vector ordering approach," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    2. Jiang, Ling & Cao, Jinde & Xiong, Lianglin, 2019. "Generalized multiobjective robustness and relations to set-valued optimization," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 599-608.
    3. Liu, An & Huang, Xia & Fan, Yingjie & Wang, Zhen, 2021. "A control-interval-dependent functional for exponential stabilization of neural networks via intermittent sampled-data control," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    4. Karnan, A. & Nagamani, G., 2022. "Non-fragile state estimation for memristive cellular neural networks with proportional delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 217-231.
    5. Zhang, Tianwei & Li, Yongkun, 2022. "S-asymptotically periodic fractional functional differential equations with off-diagonal matrix Mittag-Leffler function kernels," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 331-347.
    6. Deng, Jie & Li, Hong-Li & Cao, Jinde & Hu, Cheng & Jiang, Haijun, 2023. "State estimation for discrete-time fractional-order neural networks with time-varying delays and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    7. M. Syed Ali & Gani Stamov & Ivanka Stamova & Tarek F. Ibrahim & Arafa A. Dawood & Fathea M. Osman Birkea, 2023. "Global Asymptotic Stability and Synchronization of Fractional-Order Reaction–Diffusion Fuzzy BAM Neural Networks with Distributed Delays via Hybrid Feedback Controllers," Mathematics, MDPI, vol. 11(20), pages 1-24, October.
    8. Yao, Xueqi & Zhong, Shouming, 2021. "EID-based robust stabilization for delayed fractional-order nonlinear uncertain system with application in memristive neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Syed Ali, M. & Narayanan, Govindasamy & Shekher, Vineet & Alsulami, Hamed & Saeed, Tareq, 2020. "Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    2. Xu, Quan & Xu, Xiaohui & Zhuang, Shengxian & Xiao, Jixue & Song, Chunhua & Che, Chang, 2018. "New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 552-566.
    3. Pritam, Kocherlakota Satya & Sugandha, & Mathur, Trilok & Agarwal, Shivi, 2021. "Underlying dynamics of crime transmission with memory," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Li, Xing-Yu & Wu, Kai-Ning & Liu, Xiao-Zhen, 2023. "Mittag–Leffler stabilization for short memory fractional reaction-diffusion systems via intermittent boundary control," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    5. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Bifurcations in a delayed fractional complex-valued neural network," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 210-227.
    6. Zhang, Zhe & Wang, Yaonan & Zhang, Jing & Ai, Zhaoyang & Liu, Feng, 2022. "Novel stability results of multivariable fractional-order system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Duc, Tran Minh & Van Hoa, Ngo, 2021. "Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    8. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    9. Gani Stamov & Ivanka Stamova & George Venkov & Trayan Stamov & Cvetelina Spirova, 2020. "Global Stability of Integral Manifolds for Reaction–Diffusion Delayed Neural Networks of Cohen–Grossberg-Type under Variable Impulsive Perturbations," Mathematics, MDPI, vol. 8(7), pages 1-18, July.
    10. Watcharin Chartbupapan & Ovidiu Bagdasar & Kanit Mukdasai, 2020. "A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation," Mathematics, MDPI, vol. 8(1), pages 1-10, January.
    11. Suriguga, Ma & Kao, Yonggui & Hyder, Abd-Allah, 2020. "Uniform stability of delayed impulsive reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    12. Chenhui Wang, 2016. "Adaptive Fuzzy Control for Uncertain Fractional-Order Financial Chaotic Systems Subjected to Input Saturation," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-17, October.
    13. Huang, Conggui & Wang, Fei & Zheng, Zhaowen, 2021. "Exponential stability for nonlinear fractional order sampled-data control systems with its applications," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    14. Zhang, Chuan-Ke & He, Yong & Jiang, Lin & Lin, Wen-Juan & Wu, Min, 2017. "Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 102-120.
    15. Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun, 2017. "Mittag–Leffler stability analysis of nonlinear fractional-order systems with impulses," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 416-422.
    16. Maharajan, C. & Raja, R. & Cao, Jinde & Rajchakit, G. & Tu, Zhengwen & Alsaedi, Ahmed, 2018. "LMI-based results on exponential stability of BAM-type neural networks with leakage and both time-varying delays: A non-fragile state estimation approach," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 33-55.
    17. Wang, Fen & Chen, Yuanlong, 2021. "Mean square exponential stability for stochastic memristor-based neural networks with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    18. Zhang, Lingzhong & Yang, Yongqing & Xu, Xianyun, 2018. "Synchronization analysis for fractional order memristive Cohen–Grossberg neural networks with state feedback and impulsive control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 644-660.
    19. Xue, Huanbin & Xu, Xiaohui & Zhang, Jiye & Yang, Xiaopeng, 2019. "Robust stability of impulsive switched neural networks with multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 456-475.
    20. Gani Stamov & Ivanka Stamova & Xiaodi Li & Ekaterina Gospodinova, 2019. "Practical Stability with Respect to h -Manifolds for Impulsive Control Functional Differential Equations with Variable Impulsive Perturbations," Mathematics, MDPI, vol. 7(7), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:340:y:2019:i:c:p:221-233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.