IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v151y2021ics0960077921006196.html
   My bibliography  Save this article

Exponential stability for nonlinear fractional order sampled-data control systems with its applications

Author

Listed:
  • Huang, Conggui
  • Wang, Fei
  • Zheng, Zhaowen

Abstract

This paper investigates some topics about fractional order nonlinear systems with sampled-data. First, according to comparison principle and Laplacian transform method, sufficient conditions are derived to guarantee that the fractional order sampled-data control systems are globally and exponentially stable. Then, based on the stability results above and some properties of fractional order integral and derivative, the sampled-data controller is designed for the fractional order neural networks. Furthermore, the synchronization criteria of fractional order dynamical networks with sampled-data communications are obtained based on matrix technique and above analysis methods. Finally, three numerical examples are provided to illustrate the effectiveness of the derived results.

Suggested Citation

  • Huang, Conggui & Wang, Fei & Zheng, Zhaowen, 2021. "Exponential stability for nonlinear fractional order sampled-data control systems with its applications," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921006196
    DOI: 10.1016/j.chaos.2021.111265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921006196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chai, Yi & Chen, Liping & Wu, Ranchao & Sun, Jian, 2012. "Adaptive pinning synchronization in fractional-order complex dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5746-5758.
    2. Qi, Xingnan & Bao, Haibo & Cao, Jinde, 2019. "Exponential input-to-state stability of quaternion-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 382-393.
    3. Chen, Wei-Ching, 2008. "Nonlinear dynamics and chaos in a fractional-order financial system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1305-1314.
    4. Li, Hong-Li & Cao, Jinde & Jiang, Haijun & Alsaedi, Ahmed, 2019. "Finite-time synchronization and parameter identification of uncertain fractional-order complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    5. Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun, 2017. "Mittag–Leffler stability analysis of nonlinear fractional-order systems with impulses," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 416-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Feng-Xian & Zhang, Jie & Shu, Yan-Jun & Liu, Xin-Ge, 2023. "On stability and event trigger control of fractional neural networks by fractional non-autonomous Halanay inequalities," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. Li, Peiluan & Gao, Rong & Xu, Changjin & Li, Ying & Akgül, Ali & Baleanu, Dumitru, 2023. "Dynamics exploration for a fractional-order delayed zooplankton–phytoplankton system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xing-Yu & Wu, Kai-Ning & Liu, Xiao-Zhen, 2023. "Mittag–Leffler stabilization for short memory fractional reaction-diffusion systems via intermittent boundary control," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    2. Xu, Quan & Xu, Xiaohui & Zhuang, Shengxian & Xiao, Jixue & Song, Chunhua & Che, Chang, 2018. "New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 552-566.
    3. Ren, Jinfu & Liu, Yang & Liu, Jiming, 2023. "Chaotic behavior learning via information tracking," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Wang, Lei & Chen, Yi-Ming, 2020. "Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    5. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    6. Fendzi Donfack, Emmanuel & Nguenang, Jean Pierre & Nana, Laurent, 2020. "On the traveling waves in nonlinear electrical transmission lines with intrinsic fractional-order using discrete tanh method," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    7. Balcı, Ercan & Öztürk, İlhan & Kartal, Senol, 2019. "Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 43-51.
    8. Wafaa S. Sayed & Moheb M. R. Henein & Salwa K. Abd-El-Hafiz & Ahmed G. Radwan, 2017. "Generalized Dynamic Switched Synchronization between Combinations of Fractional-Order Chaotic Systems," Complexity, Hindawi, vol. 2017, pages 1-17, February.
    9. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Yu, Qiang & Turner, Ian & Liu, Fawang & Vegh, Viktor, 2022. "The application of the distributed-order time fractional Bloch model to magnetic resonance imaging," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    11. Zhang, Zhe & Wang, Yaonan & Zhang, Jing & Ai, Zhaoyang & Liu, Feng, 2022. "Novel stability results of multivariable fractional-order system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    12. Runzi Luo & Haipeng Su, 2018. "The Robust Control and Synchronization of a Class of Fractional-Order Chaotic Systems with External Disturbances via a Single Output," Complexity, Hindawi, vol. 2018, pages 1-8, November.
    13. Xu, Fei & Lai, Yongzeng & Shu, Xiao-Bao, 2018. "Chaos in integer order and fractional order financial systems and their synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 125-136.
    14. Duc, Tran Minh & Van Hoa, Ngo, 2021. "Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    15. Gani Stamov & Ivanka Stamova & George Venkov & Trayan Stamov & Cvetelina Spirova, 2020. "Global Stability of Integral Manifolds for Reaction–Diffusion Delayed Neural Networks of Cohen–Grossberg-Type under Variable Impulsive Perturbations," Mathematics, MDPI, vol. 8(7), pages 1-18, July.
    16. Watcharin Chartbupapan & Ovidiu Bagdasar & Kanit Mukdasai, 2020. "A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation," Mathematics, MDPI, vol. 8(1), pages 1-10, January.
    17. Zhou, Wenjia & Hu, Yuanfa & Liu, Xiaoyang & Cao, Jinde, 2022. "Finite-time adaptive synchronization of coupled uncertain neural networks via intermittent control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    18. Suriguga, Ma & Kao, Yonggui & Hyder, Abd-Allah, 2020. "Uniform stability of delayed impulsive reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    19. Tu, Zhengwen & Yang, Xinsong & Wang, Liangwei & Ding, Nan, 2019. "Stability and stabilization of quaternion-valued neural networks with uncertain time-delayed impulses: Direct quaternion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    20. Chenhui Wang, 2016. "Adaptive Fuzzy Control for Uncertain Fractional-Order Financial Chaotic Systems Subjected to Input Saturation," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921006196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.