IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i9p807-d263171.html
   My bibliography  Save this article

Some Estimates for Generalized Riemann-Liouville Fractional Integrals of Exponentially Convex Functions and Their Applications

Author

Listed:
  • Saima Rashid

    (Department of Mathematics, COMSATS University Islamabad, Islamabad 45550, Pakistan)

  • Thabet Abdeljawad

    (Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia)

  • Fahd Jarad

    (Department of Mathematics, Çankaya University, Etimesgut, 06790 Ankara, Turkey)

  • Muhammad Aslam Noor

    (Department of Mathematics, COMSATS University Islamabad, Islamabad 45550, Pakistan)

Abstract

In the present paper, we investigate some Hermite-Hadamard ( HH ) inequalities related to generalized Riemann-Liouville fractional integral ( GRLFI ) via exponentially convex functions. We also show the fundamental identity for GRLFI having the first order derivative of a given exponentially convex function. Monotonicity and exponentially convexity of functions are used with some traditional and forthright inequalities. In the application part, we give examples and new inequalities for the special means.

Suggested Citation

  • Saima Rashid & Thabet Abdeljawad & Fahd Jarad & Muhammad Aslam Noor, 2019. "Some Estimates for Generalized Riemann-Liouville Fractional Integrals of Exponentially Convex Functions and Their Applications," Mathematics, MDPI, vol. 7(9), pages 1-18, September.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:9:p:807-:d:263171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/9/807/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/9/807/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thabet Abdeljawad & Qasem M. Al-Mdallal & Mohamed A. Hajji, 2017. "Arbitrary Order Fractional Difference Operators with Discrete Exponential Kernels and Applications," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Watcharin Chartbupapan & Ovidiu Bagdasar & Kanit Mukdasai, 2020. "A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation," Mathematics, MDPI, vol. 8(1), pages 1-10, January.
    2. Saima Rashid & Muhammad Aslam Noor & Khalida Inayat Noor & Farhat Safdar & Yu-Ming Chu, 2019. "Hermite-Hadamard Type Inequalities for the Class of Convex Functions on Time Scale," Mathematics, MDPI, vol. 7(10), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdeljawad, Thabet, 2019. "Fractional difference operators with discrete generalized Mittag–Leffler kernels," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 315-324.
    2. Owolabi, Kolade M. & Hammouch, Zakia, 2019. "Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1072-1090.
    3. Al-Mdallal, Qasem M., 2018. "On fractional-Legendre spectral Galerkin method for fractional Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 261-267.
    4. Fall, Aliou Niang & Ndiaye, Seydou Nourou & Sene, Ndolane, 2019. "Black–Scholes option pricing equations described by the Caputo generalized fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 108-118.
    5. Kamsing Nonlaopon & Pshtiwan Othman Mohammed & Y. S. Hamed & Rebwar Salih Muhammad & Aram Bahroz Brzo & Hassen Aydi, 2022. "Analytical and Numerical Monotonicity Analyses for Discrete Delta Fractional Operators," Mathematics, MDPI, vol. 10(10), pages 1-9, May.
    6. Abdeljawad, Thabet, 2018. "Different type kernel h−fractional differences and their fractional h−sums," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 146-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:9:p:807-:d:263171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.