IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i10p1713-d423799.html
   My bibliography  Save this article

New Approach for a Weibull Distribution under the Progressive Type-II Censoring Scheme

Author

Listed:
  • Jung-In Seo

    (Division of Convergence Education, Halla University, Wonju-si, Gangwon-do 26404, Korea)

  • Young Eun Jeon

    (Department of Statistics, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Korea)

  • Suk-Bok Kang

    (Department of Statistics, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Korea)

Abstract

This paper proposes a new approach based on the regression framework employing a pivotal quantity to estimate unknown parameters of a Weibull distribution under the progressive Type-II censoring scheme, which provides a closed form solution for the shape parameter, unlike its maximum likelihood estimator counterpart. To resolve serious rounding errors for the exact mean and variance of the pivotal quantity, two different types of Taylor series expansion are applied, and the resulting performance is enhanced in terms of the mean square error and bias obtained through the Monte Carlo simulation. Finally, an actual application example, including a simple goodness-of-fit analysis of the actual test data based on the pivotal quantity, proves the feasibility and applicability of the proposed approach.

Suggested Citation

  • Jung-In Seo & Young Eun Jeon & Suk-Bok Kang, 2020. "New Approach for a Weibull Distribution under the Progressive Type-II Censoring Scheme," Mathematics, MDPI, vol. 8(10), pages 1-10, October.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1713-:d:423799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/10/1713/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/10/1713/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pareek, Bhuvanesh & Kundu, Debasis & Kumar, Sumit, 2009. "On progressively censored competing risks data for Weibull distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4083-4094, October.
    2. Hai-Lin Lu & Shin-Hwa Tao, 2007. "The Estimation of Pareto Distribution by a Weighted Least Square Method," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(6), pages 913-926, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahzad Hussain & Sajjad Haider Bhatti & Tanvir Ahmad & Muhammad Ahmed Shehzad, 2021. "Parameter estimation of the Pareto distribution using least squares approaches blended with different rank methods and its applications in modeling natural catastrophes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1693-1708, June.
    2. Mazen Nassar & Refah Alotaibi & Ahmed Elshahhat, 2023. "Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    3. Manoj Chacko & Rakhi Mohan, 2019. "Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals," Computational Statistics, Springer, vol. 34(1), pages 233-252, March.
    4. Frederico Caeiro & Ayana Mateus, 2023. "A New Class of Generalized Probability-Weighted Moment Estimators for the Pareto Distribution," Mathematics, MDPI, vol. 11(5), pages 1-17, February.
    5. Rui Hua & Wenhao Gui, 2022. "Revisit to progressively Type-II censored competing risks data from Lomax distributions," Journal of Risk and Reliability, , vol. 236(3), pages 377-394, June.
    6. Jiaxin Nie & Wenhao Gui, 2019. "Parameter Estimation of Lindley Distribution Based on Progressive Type-II Censored Competing Risks Data with Binomial Removals," Mathematics, MDPI, vol. 7(7), pages 1-15, July.
    7. Hanan Haj Ahmad & Mohamed Aboshady & Mahmoud Mansour, 2024. "The Role of Risk Factors in System Performance: A Comprehensive Study with Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 12(11), pages 1-21, June.
    8. U. H. Salemi & S. Rezaei & Y. Si & S. Nadarajah, 2018. "On Optimal Progressive Censoring Schemes for Normal Distribution," Annals of Data Science, Springer, vol. 5(4), pages 637-658, December.
    9. Muqrin A. Almuqrin & Mukhtar M. Salah & Essam A. Ahmed, 2022. "Statistical Inference for Competing Risks Model with Adaptive Progressively Type-II Censored Gompertz Life Data Using Industrial and Medical Applications," Mathematics, MDPI, vol. 10(22), pages 1-38, November.
    10. Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
    11. Frederico Caeiro & Mina Norouzirad, 2024. "Comparing Estimation Methods for the Power–Pareto Distribution," Econometrics, MDPI, vol. 12(3), pages 1-28, July.
    12. Cramer, Erhard & Schmiedt, Anja Bettina, 2011. "Progressively Type-II censored competing risks data from Lomax distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1285-1303, March.
    13. Mazen Nassar & Refah Alotaibi & Chunfang Zhang, 2022. "Estimation of Reliability Indices for Alpha Power Exponential Distribution Based on Progressively Censored Competing Risks Data," Mathematics, MDPI, vol. 10(13), pages 1-25, June.
    14. Subhankar Dutta & Suchandan Kayal, 2023. "Inference of a competing risks model with partially observed failure causes under improved adaptive type-II progressive censoring," Journal of Risk and Reliability, , vol. 237(4), pages 765-780, August.
    15. Junru Ren & Wenhao Gui, 2021. "Inference and optimal censoring scheme for progressively Type-II censored competing risks model for generalized Rayleigh distribution," Computational Statistics, Springer, vol. 36(1), pages 479-513, March.
    16. Wu, Shuo-Jye & Huang, Syuan-Rong, 2012. "Progressively first-failure censored reliability sampling plans with cost constraint," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2018-2030.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1713-:d:423799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.