IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v12y2024i3p20-d1433083.html
   My bibliography  Save this article

Comparing Estimation Methods for the Power–Pareto Distribution

Author

Listed:
  • Frederico Caeiro

    (Department of Mathematics and Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology (NOVA FCT), 2829-516 Caparica, Portugal)

  • Mina Norouzirad

    (Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology (NOVA FCT), 2829-516 Caparica, Portugal)

Abstract

Non-negative distributions are important tools in various fields. Given the importance of achieving a good fit, the literature offers hundreds of different models, from the very simple to the highly flexible. In this paper, we consider the power–Pareto model, which is defined by its quantile function. This distribution has three parameters, allowing the model to take different shapes, including symmetrical and left- and right-skewed. We provide different distributional characteristics and discuss parameter estimation. In addition to the already-known Maximum Likelihood and Least Squares of the logarithm of the order statistics estimation methods, we propose several additional methods. A simulation study and an application to two datasets are conducted to illustrate the performance of the estimation methods.

Suggested Citation

  • Frederico Caeiro & Mina Norouzirad, 2024. "Comparing Estimation Methods for the Power–Pareto Distribution," Econometrics, MDPI, vol. 12(3), pages 1-28, July.
  • Handle: RePEc:gam:jecnmx:v:12:y:2024:i:3:p:20-:d:1433083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/12/3/20/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/12/3/20/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Finkelstein & Howard G. Tucker & Jerry Alan Veeh, 2006. "Pareto Tail Index Estimation Revisited," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(1), pages 1-10.
    2. Hai-Lin Lu & Shin-Hwa Tao, 2007. "The Estimation of Pareto Distribution by a Weighted Least Square Method," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(6), pages 913-926, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frederico Caeiro & Ayana Mateus, 2023. "A New Class of Generalized Probability-Weighted Moment Estimators for the Pareto Distribution," Mathematics, MDPI, vol. 11(5), pages 1-17, February.
    2. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    3. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & Hussain, Saiful Izzuan, 2021. "Measuring income inequality: A robust semi-parametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    4. Felix Koenig, 2023. "Technical Change and Superstar Effects: Evidence from the Rollout of Television," American Economic Review: Insights, American Economic Association, vol. 5(2), pages 207-223, June.
    5. Frank A. Cowell & Philippe Kerm, 2015. "Wealth Inequality: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(4), pages 671-710, September.
    6. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & Hussain, Saiful Izzuan, 2019. "A robust and efficient estimator for the tail index of inverse Pareto distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 431-439.
    7. Shahzad Hussain & Sajjad Haider Bhatti & Tanvir Ahmad & Muhammad Ahmed Shehzad, 2021. "Parameter estimation of the Pareto distribution using least squares approaches blended with different rank methods and its applications in modeling natural catastrophes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1693-1708, June.
    8. Silvia De Nicol`o & Maria Rosaria Ferrante & Silvia Pacei, 2021. "Mind the Income Gap: Bias Correction of Inequality Estimators in Small-Sized Samples," Papers 2107.08950, arXiv.org, revised May 2023.
    9. Jan Beran & Dieter Schell & Milan Stehlík, 2014. "The harmonic moment tail index estimator: asymptotic distribution and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 193-220, February.
    10. Jung-In Seo & Young Eun Jeon & Suk-Bok Kang, 2020. "New Approach for a Weibull Distribution under the Progressive Type-II Censoring Scheme," Mathematics, MDPI, vol. 8(10), pages 1-10, October.
    11. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman, 2018. "A robust semi-parametric approach for measuring income inequality in Malaysia," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1-13.
    12. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman, 2018. "Optimal threshold for Pareto tail modelling in the presence of outliers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 169-180.
    13. Muhammad Aslam Mohd Safari & Nurulkamal Masseran & Muhammad Hilmi Abdul Majid, 2020. "Robust Reliability Estimation for Lindley Distribution—A Probability Integral Transform Statistical Approach," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    14. Beran, Jan & Schell, Dieter, 2012. "On robust tail index estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3430-3443.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:12:y:2024:i:3:p:20-:d:1433083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.