IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i10p937-d274975.html
   My bibliography  Save this article

Higher-Order Iteration Schemes for Solving Nonlinear Systems of Equations

Author

Listed:
  • Hessah Faihan Alqahtani

    (Department of Mathematics, King Abdulaziz University, Campus Rabigh 21911, Saudi Arabia)

  • Ramandeep Behl

    (Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Munish Kansal

    (School of Mathematics, Thapar Institute of Engineering and Technology, Patiala 147004, India)

Abstract

We present a three-step family of iterative methods to solve systems of nonlinear equations. This family is a generalization of the well-known fourth-order King’s family to the multidimensional case. The convergence analysis of the methods is provided under mild conditions. The analytical discussion of the work is upheld by performing numerical experiments on some application oriented problems. Finally, numerical results demonstrate the validity and reliability of the suggested methods.

Suggested Citation

  • Hessah Faihan Alqahtani & Ramandeep Behl & Munish Kansal, 2019. "Higher-Order Iteration Schemes for Solving Nonlinear Systems of Equations," Mathematics, MDPI, vol. 7(10), pages 1-14, October.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:937-:d:274975
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/10/937/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/10/937/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Narang, Mona & Bhatia, Saurabh & Kanwar, V., 2016. "New two-parameter Chebyshev–Halley-like family of fourth and sixth-order methods for systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 394-403.
    2. Abbasbandy, Saeid & Bakhtiari, Parisa & Cordero, Alicia & Torregrosa, Juan R. & Lotfi, Taher, 2016. "New efficient methods for solving nonlinear systems of equations with arbitrary even order," Applied Mathematics and Computation, Elsevier, vol. 287, pages 94-103.
    3. Rostamy, Davoud & Bakhtiari, Parisa, 2015. "New efficient multipoint iterative methods for solving nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 350-356.
    4. Alzahrani, Abdullah Khamis Hassan & Behl, Ramandeep & Alshomrani, Ali Saleh, 2018. "Some higher-order iteration functions for solving nonlinear models," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 80-93.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhanlav, T. & Otgondorj, Kh., 2021. "Higher order Jarratt-like iterations for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    2. Ramandeep Behl & Ioannis K. Argyros, 2020. "A New Higher-Order Iterative Scheme for the Solutions of Nonlinear Systems," Mathematics, MDPI, vol. 8(2), pages 1-21, February.
    3. Sharma, Janak Raj & Sharma, Rajni & Bahl, Ashu, 2016. "An improved Newton–Traub composition for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 98-110.
    4. José J. Padilla & Francisco I. Chicharro & Alicia Cordero & Alejandro M. Hernández-Díaz & Juan R. Torregrosa, 2024. "A Class of Efficient Sixth-Order Iterative Methods for Solving the Nonlinear Shear Model of a Reinforced Concrete Beam," Mathematics, MDPI, vol. 12(3), pages 1-16, February.
    5. Deepak Kumar & Ioannis K. Argyros & Janak Raj Sharma, 2018. "Convergence Ball and Complex Geometry of an Iteration Function of Higher Order," Mathematics, MDPI, vol. 7(1), pages 1-13, December.
    6. Abbasbandy, Saeid & Bakhtiari, Parisa & Cordero, Alicia & Torregrosa, Juan R. & Lotfi, Taher, 2016. "New efficient methods for solving nonlinear systems of equations with arbitrary even order," Applied Mathematics and Computation, Elsevier, vol. 287, pages 94-103.
    7. Chun, Changbum & Neta, Beny, 2019. "Developing high order methods for the solution of systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 178-190.
    8. Marcos Tostado-Véliz & Salah Kamel & Francisco Jurado & Francisco J. Ruiz-Rodriguez, 2021. "On the Applicability of Two Families of Cubic Techniques for Power Flow Analysis," Energies, MDPI, vol. 14(14), pages 1-15, July.
    9. Malik Zaka Ullah & Ramandeep Behl & Ioannis K. Argyros, 2020. "Some High-Order Iterative Methods for Nonlinear Models Originating from Real Life Problems," Mathematics, MDPI, vol. 8(8), pages 1-17, July.
    10. Janak Raj Sharma & Deepak Kumar & Ioannis K. Argyros & Ángel Alberto Magreñán, 2019. "On a Bi-Parametric Family of Fourth Order Composite Newton–Jarratt Methods for Nonlinear Systems," Mathematics, MDPI, vol. 7(6), pages 1-27, May.
    11. Beny Neta, 2021. "A Note on Traub’s Method for Systems of Nonlinear Equations," Mathematics, MDPI, vol. 9(23), pages 1-8, November.
    12. Narang, Mona & Bhatia, Saurabh & Kanwar, V., 2016. "New two-parameter Chebyshev–Halley-like family of fourth and sixth-order methods for systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 394-403.
    13. Bahl, Ashu & Cordero, Alicia & Sharma, Rajni & R. Torregrosa, Juan, 2019. "A novel bi-parametric sixth order iterative scheme for solving nonlinear systems and its dynamics," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 147-166.
    14. Janak Raj Sharma & Deepak Kumar & Ioannis K. Argyros, 2019. "Local Convergence and Attraction Basins of Higher Order, Jarratt-Like Iterations," Mathematics, MDPI, vol. 7(12), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:937-:d:274975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.