IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v334y2018icp80-93.html
   My bibliography  Save this article

Some higher-order iteration functions for solving nonlinear models

Author

Listed:
  • Alzahrani, Abdullah Khamis Hassan
  • Behl, Ramandeep
  • Alshomrani, Ali Saleh

Abstract

In this paper, we present a new efficient sixth-order family of Jarratt type methods for solving scalar equations. Then, we extend this family to the multidimensional case preserving the same order of convergence. We also discuss the theoretical convergence properties of the proposed scheme in the case of scalar as well as multidimensional case. The derivation of these schemes are based on weight function approach and free disposable parameters. We also demonstrate the applicability of them on total six number of problems: first five are real life problems namely, continuous stirred tank reactor (CSTR), chemical engineering, the trajectory of an electron in the air gap between two parallel plates, Hammerstein integration and boundary value problems; last one is the standard academic test problem. In addition, numerical comparisons are made to show the performance of the proposed iterative techniques with the existing techniques of the same order in the scalar as well as multi-dimensional case. Finally on the basis of numerical results, we conclude that our techniques perform better in terms of residual error, error between the two consecutive iterations, asymptotic error constant term and approximated root as compared to the existing ones of same order in scalar as well as multidimensional case.

Suggested Citation

  • Alzahrani, Abdullah Khamis Hassan & Behl, Ramandeep & Alshomrani, Ali Saleh, 2018. "Some higher-order iteration functions for solving nonlinear models," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 80-93.
  • Handle: RePEc:eee:apmaco:v:334:y:2018:i:c:p:80-93
    DOI: 10.1016/j.amc.2018.03.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318303011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.03.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Artidiello, Santiago & Cordero, Alicia & Torregrosa, Juan R. & Vassileva, Maria P., 2015. "Multidimensional generalization of iterative methods for solving nonlinear problems by means of weight-function procedure," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 1064-1071.
    2. Lee, Min-Young & Ik Kim, Young & Alberto Magreñán, Á., 2017. "On the dynamics of a triparametric family of optimal fourth-order multiple-zero finders with a weight function of the principal mth root of a function-to function ratio," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 564-590.
    3. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2015. "On developing a higher-order family of double-Newton methods with a bivariate weighting function," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 277-290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deepak Kumar & Ioannis K. Argyros & Janak Raj Sharma, 2018. "Convergence Ball and Complex Geometry of an Iteration Function of Higher Order," Mathematics, MDPI, vol. 7(1), pages 1-13, December.
    2. Hessah Faihan Alqahtani & Ramandeep Behl & Munish Kansal, 2019. "Higher-Order Iteration Schemes for Solving Nonlinear Systems of Equations," Mathematics, MDPI, vol. 7(10), pages 1-14, October.
    3. José J. Padilla & Francisco I. Chicharro & Alicia Cordero & Alejandro M. Hernández-Díaz & Juan R. Torregrosa, 2024. "A Class of Efficient Sixth-Order Iterative Methods for Solving the Nonlinear Shear Model of a Reinforced Concrete Beam," Mathematics, MDPI, vol. 12(3), pages 1-16, February.
    4. Janak Raj Sharma & Deepak Kumar & Ioannis K. Argyros, 2019. "Local Convergence and Attraction Basins of Higher Order, Jarratt-Like Iterations," Mathematics, MDPI, vol. 7(12), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chein-Shan Liu & Chih-Wen Chang, 2024. "New Memory-Updating Methods in Two-Step Newton’s Variants for Solving Nonlinear Equations with High Efficiency Index," Mathematics, MDPI, vol. 12(4), pages 1-22, February.
    2. Raudys R. Capdevila & Alicia Cordero & Juan R. Torregrosa, 2019. "A New Three-Step Class of Iterative Methods for Solving Nonlinear Systems," Mathematics, MDPI, vol. 7(12), pages 1-14, December.
    3. Ramandeep Behl & Ioannis K. Argyros, 2020. "A New Higher-Order Iterative Scheme for the Solutions of Nonlinear Systems," Mathematics, MDPI, vol. 8(2), pages 1-21, February.
    4. Behl, Ramandeep & Cordero, Alicia & Motsa, Sandile S. & Torregrosa, Juan R., 2017. "Stable high-order iterative methods for solving nonlinear models," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 70-88.
    5. Geum, Young Hee & Kim, Young Ik & Magreñán, Á. Alberto, 2016. "A biparametric extension of King’s fourth-order methods and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 254-275.
    6. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2015. "A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 387-400.
    7. Kim, Young Ik & Behl, Ramandeep & Motsa, S.S., 2016. "Higher-order efficient class of Chebyshev–Halley type methods," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1148-1159.
    8. Argyros, Ioannis K. & Behl, Ramandeep & Tenreiro Machado, J.A. & Alshomrani, Ali Saleh, 2019. "Local convergence of iterative methods for solving equations and system of equations using weight function techniques," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 891-902.
    9. Ullah, M. Zaka & Kosari, S. & Soleymani, F. & Haghani, F. Khaksar & S. Al-Fhaid, A., 2016. "A super-fast tri-parametric iterative method with memory," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 486-491.
    10. José J. Padilla & Francisco I. Chicharro & Alicia Cordero & Alejandro M. Hernández-Díaz & Juan R. Torregrosa, 2024. "A Class of Efficient Sixth-Order Iterative Methods for Solving the Nonlinear Shear Model of a Reinforced Concrete Beam," Mathematics, MDPI, vol. 12(3), pages 1-16, February.
    11. Ramandeep Behl & Ioannis K. Argyros & Jose Antonio Tenreiro Machado, 2020. "Ball Comparison between Three Sixth Order Methods for Banach Space Valued Operators," Mathematics, MDPI, vol. 8(5), pages 1-12, April.
    12. Chun, Changbum & Neta, Beny, 2016. "Comparison of several families of optimal eighth order methods," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 762-773.
    13. Lee, Min-Young & Ik Kim, Young & Alberto Magreñán, Á., 2017. "On the dynamics of a triparametric family of optimal fourth-order multiple-zero finders with a weight function of the principal mth root of a function-to function ratio," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 564-590.
    14. Ramandeep Behl & Ioannis K. Argyros & Fouad Othman Mallawi & Samaher Khalaf Alharbi, 2022. "Extending the Applicability of Highly Efficient Iterative Methods for Nonlinear Equations and Their Applications," Mathematics, MDPI, vol. 11(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:334:y:2018:i:c:p:80-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.