IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2018i1p28-d193789.html
   My bibliography  Save this article

Convergence Ball and Complex Geometry of an Iteration Function of Higher Order

Author

Listed:
  • Deepak Kumar

    (Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Sangrur, India)

  • Ioannis K. Argyros

    (Department of Mathematics Sciences, Cameron University, Lawton, OK 73505, USA)

  • Janak Raj Sharma

    (Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Sangrur, India)

Abstract

Higher-order derivatives are used to determine the convergence order of iterative methods. However, such derivatives are not present in the formulas. Therefore, the assumptions on the higher-order derivatives of the function restrict the applicability of methods. Our convergence analysis of an eighth-order method uses only the derivative of order one. The convergence results so obtained are applied to some real problems, which arise in science and engineering. Finally, stability of the method is checked through complex geometry shown by drawing basins of attraction of the solutions.

Suggested Citation

  • Deepak Kumar & Ioannis K. Argyros & Janak Raj Sharma, 2018. "Convergence Ball and Complex Geometry of an Iteration Function of Higher Order," Mathematics, MDPI, vol. 7(1), pages 1-13, December.
  • Handle: RePEc:gam:jmathe:v:7:y:2018:i:1:p:28-:d:193789
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/1/28/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/1/28/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alicia Cordero & Esther Gómez & Juan R. Torregrosa, 2017. "Efficient High-Order Iterative Methods for Solving Nonlinear Systems and Their Application on Heat Conduction Problems," Complexity, Hindawi, vol. 2017, pages 1-11, January.
    2. Rostamy, Davoud & Bakhtiari, Parisa, 2015. "New efficient multipoint iterative methods for solving nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 350-356.
    3. Alzahrani, Abdullah Khamis Hassan & Behl, Ramandeep & Alshomrani, Ali Saleh, 2018. "Some higher-order iteration functions for solving nonlinear models," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 80-93.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hessah Faihan Alqahtani & Ramandeep Behl & Munish Kansal, 2019. "Higher-Order Iteration Schemes for Solving Nonlinear Systems of Equations," Mathematics, MDPI, vol. 7(10), pages 1-14, October.
    2. Abbasbandy, Saeid & Bakhtiari, Parisa & Cordero, Alicia & Torregrosa, Juan R. & Lotfi, Taher, 2016. "New efficient methods for solving nonlinear systems of equations with arbitrary even order," Applied Mathematics and Computation, Elsevier, vol. 287, pages 94-103.
    3. Ramandeep Behl & Ioannis K. Argyros, 2020. "A New Higher-Order Iterative Scheme for the Solutions of Nonlinear Systems," Mathematics, MDPI, vol. 8(2), pages 1-21, February.
    4. Marcos Tostado-Véliz & Salah Kamel & Francisco Jurado & Francisco J. Ruiz-Rodriguez, 2021. "On the Applicability of Two Families of Cubic Techniques for Power Flow Analysis," Energies, MDPI, vol. 14(14), pages 1-15, July.
    5. Sharma, Janak Raj & Sharma, Rajni & Bahl, Ashu, 2016. "An improved Newton–Traub composition for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 98-110.
    6. Abro, Hameer Akhtar & Shaikh, Muhammad Mujtaba, 2019. "A new time-efficient and convergent nonlinear solver," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 516-536.
    7. Francisco I. Chicharro & Alicia Cordero & Neus Garrido & Juan R. Torregrosa, 2019. "Generalized High-Order Classes for Solving Nonlinear Systems and Their Applications," Mathematics, MDPI, vol. 7(12), pages 1-14, December.
    8. Cordero, Alicia & Leonardo-Sepúlveda, Miguel A. & Torregrosa, Juan R. & Vassileva, María P., 2024. "Increasing in three units the order of convergence of iterative methods for solving nonlinear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 509-522.
    9. José J. Padilla & Francisco I. Chicharro & Alicia Cordero & Alejandro M. Hernández-Díaz & Juan R. Torregrosa, 2024. "A Class of Efficient Sixth-Order Iterative Methods for Solving the Nonlinear Shear Model of a Reinforced Concrete Beam," Mathematics, MDPI, vol. 12(3), pages 1-16, February.
    10. Narang, Mona & Bhatia, Saurabh & Kanwar, V., 2016. "New two-parameter Chebyshev–Halley-like family of fourth and sixth-order methods for systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 394-403.
    11. Janak Raj Sharma & Deepak Kumar & Ioannis K. Argyros, 2019. "Local Convergence and Attraction Basins of Higher Order, Jarratt-Like Iterations," Mathematics, MDPI, vol. 7(12), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2018:i:1:p:28-:d:193789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.