IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i8p1249-d392674.html
   My bibliography  Save this article

Some High-Order Iterative Methods for Nonlinear Models Originating from Real Life Problems

Author

Listed:
  • Malik Zaka Ullah

    (Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Ramandeep Behl

    (Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Ioannis K. Argyros

    (Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA)

Abstract

We develop a sixth order Steffensen-type method with one parameter in order to solve systems of equations. Our study’s novelty lies in the fact that two types of local convergence are established under weak conditions, including computable error bounds and uniqueness of the results. The performance of our methods is discussed and compared to other schemes using similar information. Finally, very large systems of equations ( 100 × 100 and 200 × 200 ) are solved in order to test the theoretical results and compare them favorably to earlier works.

Suggested Citation

  • Malik Zaka Ullah & Ramandeep Behl & Ioannis K. Argyros, 2020. "Some High-Order Iterative Methods for Nonlinear Models Originating from Real Life Problems," Mathematics, MDPI, vol. 8(8), pages 1-17, July.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1249-:d:392674
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/8/1249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/8/1249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abbasbandy, Saeid & Bakhtiari, Parisa & Cordero, Alicia & Torregrosa, Juan R. & Lotfi, Taher, 2016. "New efficient methods for solving nonlinear systems of equations with arbitrary even order," Applied Mathematics and Computation, Elsevier, vol. 287, pages 94-103.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun, Changbum & Neta, Beny, 2019. "Developing high order methods for the solution of systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 178-190.
    2. Zhanlav, T. & Otgondorj, Kh., 2021. "Higher order Jarratt-like iterations for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    3. Ramandeep Behl & Ioannis K. Argyros, 2020. "A New Higher-Order Iterative Scheme for the Solutions of Nonlinear Systems," Mathematics, MDPI, vol. 8(2), pages 1-21, February.
    4. Janak Raj Sharma & Deepak Kumar & Ioannis K. Argyros & Ángel Alberto Magreñán, 2019. "On a Bi-Parametric Family of Fourth Order Composite Newton–Jarratt Methods for Nonlinear Systems," Mathematics, MDPI, vol. 7(6), pages 1-27, May.
    5. Hessah Faihan Alqahtani & Ramandeep Behl & Munish Kansal, 2019. "Higher-Order Iteration Schemes for Solving Nonlinear Systems of Equations," Mathematics, MDPI, vol. 7(10), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1249-:d:392674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.