IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v275y2016icp394-403.html
   My bibliography  Save this article

New two-parameter Chebyshev–Halley-like family of fourth and sixth-order methods for systems of nonlinear equations

Author

Listed:
  • Narang, Mona
  • Bhatia, Saurabh
  • Kanwar, V.

Abstract

The two-parameter Chebyshev–Halley-like family of optimal two-point fourth-order methods proposed by Babajee (2015), is further extended to solve systems of nonlinear equations. This two-step fourth-order family is further extended to obtain a two-parameter family of sixth-order methods which requires only one extra function evaluation. The performance of some special members of the proposed families using only single inverse per iteration have been tested through numerical examples and the results show that these are effective and comparable to existing methods both in order and efficiency.

Suggested Citation

  • Narang, Mona & Bhatia, Saurabh & Kanwar, V., 2016. "New two-parameter Chebyshev–Halley-like family of fourth and sixth-order methods for systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 394-403.
  • Handle: RePEc:eee:apmaco:v:275:y:2016:i:c:p:394-403
    DOI: 10.1016/j.amc.2015.11.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315015659
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.11.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rostamy, Davoud & Bakhtiari, Parisa, 2015. "New efficient multipoint iterative methods for solving nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 350-356.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahl, Ashu & Cordero, Alicia & Sharma, Rajni & R. Torregrosa, Juan, 2019. "A novel bi-parametric sixth order iterative scheme for solving nonlinear systems and its dynamics," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 147-166.
    2. Hessah Faihan Alqahtani & Ramandeep Behl & Munish Kansal, 2019. "Higher-Order Iteration Schemes for Solving Nonlinear Systems of Equations," Mathematics, MDPI, vol. 7(10), pages 1-14, October.
    3. Sharma, Janak Raj & Sharma, Rajni & Bahl, Ashu, 2016. "An improved Newton–Traub composition for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 98-110.
    4. José J. Padilla & Francisco I. Chicharro & Alicia Cordero & Alejandro M. Hernández-Díaz & Juan R. Torregrosa, 2024. "A Class of Efficient Sixth-Order Iterative Methods for Solving the Nonlinear Shear Model of a Reinforced Concrete Beam," Mathematics, MDPI, vol. 12(3), pages 1-16, February.
    5. Zhanlav, T. & Otgondorj, Kh., 2021. "Higher order Jarratt-like iterations for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    6. Beny Neta, 2021. "A Note on Traub’s Method for Systems of Nonlinear Equations," Mathematics, MDPI, vol. 9(23), pages 1-8, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbasbandy, Saeid & Bakhtiari, Parisa & Cordero, Alicia & Torregrosa, Juan R. & Lotfi, Taher, 2016. "New efficient methods for solving nonlinear systems of equations with arbitrary even order," Applied Mathematics and Computation, Elsevier, vol. 287, pages 94-103.
    2. Ramandeep Behl & Ioannis K. Argyros, 2020. "A New Higher-Order Iterative Scheme for the Solutions of Nonlinear Systems," Mathematics, MDPI, vol. 8(2), pages 1-21, February.
    3. Marcos Tostado-Véliz & Salah Kamel & Francisco Jurado & Francisco J. Ruiz-Rodriguez, 2021. "On the Applicability of Two Families of Cubic Techniques for Power Flow Analysis," Energies, MDPI, vol. 14(14), pages 1-15, July.
    4. Sharma, Janak Raj & Sharma, Rajni & Bahl, Ashu, 2016. "An improved Newton–Traub composition for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 98-110.
    5. Hessah Faihan Alqahtani & Ramandeep Behl & Munish Kansal, 2019. "Higher-Order Iteration Schemes for Solving Nonlinear Systems of Equations," Mathematics, MDPI, vol. 7(10), pages 1-14, October.
    6. Deepak Kumar & Ioannis K. Argyros & Janak Raj Sharma, 2018. "Convergence Ball and Complex Geometry of an Iteration Function of Higher Order," Mathematics, MDPI, vol. 7(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:275:y:2016:i:c:p:394-403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.