IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v3y2015i2p153-170d47957.html
   My bibliography  Save this article

Analytical Solution of Generalized Space-Time Fractional Cable Equation

Author

Listed:
  • Ram K. Saxena

    (Department of Mathematics and Statistics, Jai Narain Vyas University, Jodhpur 342004, India
    These authors contributed equally to this work.)

  • Zivorad Tomovski

    (Department of Mathematics, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
    Faculty of Natural Sciences and Mathematics, Institute of Mathematics, Saints Cyril and Methodius University, 1000 Skopje, Macedonia)

  • Trifce Sandev

    (Radiation Safety Directorate, Partizanski odredi 143, P.O. Box 22, 1020 Skopje, Macedonia
    Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden, Germany
    These authors contributed equally to this work.)

Abstract

In this paper, we consider generalized space-time fractional cable equation in presence of external source. By using the Fourier-Laplace transform we obtain the Green function in terms of infinite series in H-functions. The fractional moments of the fundamental solution are derived and their asymptotic behavior in the short and long time limit is analyzed. Some previously obtained results are compared with those presented in this paper. By using the Bernstein characterization theorem we find the conditions under which the even moments are non-negative.

Suggested Citation

  • Ram K. Saxena & Zivorad Tomovski & Trifce Sandev, 2015. "Analytical Solution of Generalized Space-Time Fractional Cable Equation," Mathematics, MDPI, vol. 3(2), pages 1-18, April.
  • Handle: RePEc:gam:jmathe:v:3:y:2015:i:2:p:153-170:d:47957
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/3/2/153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/3/2/153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yasuhiro Fujita, 1993. "A generalization of the results of Pillai," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(2), pages 361-365, June.
    2. Hilfer, R., 1995. "An extension of the dynamical foundation for the statistical equilibrium concept," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 221(1), pages 89-96.
    3. Sandev, Trifce & Tomovski, Živorad & Dubbeldam, Johan L.A., 2011. "Generalized Langevin equation with a three parameter Mittag-Leffler noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3627-3636.
    4. Tomovski, Živorad & Sandev, Trifce & Metzler, Ralf & Dubbeldam, Johan, 2012. "Generalized space–time fractional diffusion equation with composite fractional time derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2527-2542.
    5. Abdon Atangana & Aydin Secer, 2013. "A Note on Fractional Order Derivatives and Table of Fractional Derivatives of Some Special Functions," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emad-Eldin Aly & Nadjib Bouzar, 2000. "On Geometric Infinite Divisibility and Stability," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(4), pages 790-799, December.
    2. Tawfik, Ashraf M. & Abdelhamid, Hamdi M., 2021. "Generalized fractional diffusion equation with arbitrary time varying diffusivity," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    3. Nuugulu, Samuel M & Gideon, Frednard & Patidar, Kailash C, 2021. "A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Kumar, Sunil & Chauhan, R.P. & Momani, Shaher & Hadid, Samir, 2021. "A study of fractional TB model due to mycobacterium tuberculosis bacteria," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Barman, Dipesh & Roy, Jyotirmoy & Alrabaiah, Hussam & Panja, Prabir & Mondal, Sankar Prasad & Alam, Shariful, 2021. "Impact of predator incited fear and prey refuge in a fractional order prey predator model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Lini Qiu & Guitian He & Yun Peng & Huijun Lv & Yujie Tang, 2023. "Average amplitudes analysis for a phenomenological model under hydrodynamic interactions with periodic perturbation and multiplicative trichotomous noise," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(4), pages 1-20, April.
    7. Pece Trajanovski & Petar Jolakoski & Ljupco Kocarev & Trifce Sandev, 2023. "Ornstein–Uhlenbeck Process on Three-Dimensional Comb under Stochastic Resetting," Mathematics, MDPI, vol. 11(16), pages 1-28, August.
    8. Doungmo Goufo, Emile F. & Kumar, Sunil & Mugisha, S.B., 2020. "Similarities in a fifth-order evolution equation with and with no singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    9. Maike A. F. dos Santos, 2019. "Mittag–Leffler Memory Kernel in Lévy Flights," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
    10. Nigmatullin, R.R. & Evdokimov, Yu.K., 2016. "The concept of fractal experiments: New possibilities in quantitative description of quasi-reproducible measurements," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 319-328.
    11. Uddin, Md. Jasim & Rana, Sarker Md. Sohel & Işık, Seval & Kangalgil, Figen, 2023. "On the qualitative study of a discrete fractional order prey–predator model with the effects of harvesting on predator population," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    12. Han, Huan & Wang, Zhanqing, 2019. "An alternating direction implicit scheme of a fractional-order diffusion tensor image registration model," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 105-118.
    13. Agarwal, Praveen & Singh, Ram & Rehman, Attiq ul, 2021. "Numerical solution of hybrid mathematical model of dengue transmission with relapse and memory via Adam–Bashforth–Moulton predictor-corrector scheme," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    14. Sun, HongGuang & Hao, Xiaoxiao & Zhang, Yong & Baleanu, Dumitru, 2017. "Relaxation and diffusion models with non-singular kernels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 590-596.
    15. Fendzi-Donfack, Emmanuel & Kenfack-Jiotsa, Aurélien, 2023. "Extended Fan’s sub-ODE technique and its application to a fractional nonlinear coupled network including multicomponents — LC blocks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    16. Gayathri Vivekanandan & Mahtab Mehrabbeik & Hayder Natiq & Karthikeyan Rajagopal & Esteban Tlelo-Cuautle, 2022. "Fractional-Order Memristive Wilson Neuron Model: Dynamical Analysis and Synchronization Patterns," Mathematics, MDPI, vol. 10(16), pages 1-9, August.
    17. Emilia Bazhlekova & Ivan Bazhlekov, 2019. "Subordination Approach to Space-Time Fractional Diffusion," Mathematics, MDPI, vol. 7(5), pages 1-12, May.
    18. R. Hilfer, 2015. "Time Automorphisms on C*-Algebras," Mathematics, MDPI, vol. 3(3), pages 1-18, July.
    19. Trifce Sandev, 2017. "Generalized Langevin Equation and the Prabhakar Derivative," Mathematics, MDPI, vol. 5(4), pages 1-11, November.
    20. Alexander Apelblat, 2020. "Differentiation of the Mittag-Leffler Functions with Respect to Parameters in the Laplace Transform Approach," Mathematics, MDPI, vol. 8(5), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:3:y:2015:i:2:p:153-170:d:47957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.