IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i5p415-d229697.html
   My bibliography  Save this article

Subordination Approach to Space-Time Fractional Diffusion

Author

Listed:
  • Emilia Bazhlekova

    (Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Bld. 8, Sofia 1113, Bulgaria)

  • Ivan Bazhlekov

    (Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Bld. 8, Sofia 1113, Bulgaria)

Abstract

The fundamental solution to the multi-dimensional space-time fractional diffusion equation is studied by applying the subordination principle, which provides a relation to the classical Gaussian function. Integral representations in terms of Mittag-Leffler functions are derived for the fundamental solution and the subordination kernel. The obtained integral representations are used for numerical evaluation of the fundamental solution for different values of the parameters.

Suggested Citation

  • Emilia Bazhlekova & Ivan Bazhlekov, 2019. "Subordination Approach to Space-Time Fractional Diffusion," Mathematics, MDPI, vol. 7(5), pages 1-12, May.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:5:p:415-:d:229697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/5/415/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/5/415/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boyadjiev, Lyubomir & Luchko, Yuri, 2017. "Mellin integral transform approach to analyze the multidimensional diffusion-wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 127-134.
    2. Tomovski, Živorad & Sandev, Trifce & Metzler, Ralf & Dubbeldam, Johan, 2012. "Generalized space–time fractional diffusion equation with composite fractional time derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2527-2542.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trifce Sandev & Viktor Domazetoski & Alexander Iomin & Ljupco Kocarev, 2021. "Diffusion–Advection Equations on a Comb: Resetting and Random Search," Mathematics, MDPI, vol. 9(3), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Awad, Emad & Sandev, Trifce & Metzler, Ralf & Chechkin, Aleksei, 2021. "Closed-form multi-dimensional solutions and asymptotic behaviors for subdiffusive processes with crossovers: I. Retarding case," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Tawfik, Ashraf M. & Abdelhamid, Hamdi M., 2021. "Generalized fractional diffusion equation with arbitrary time varying diffusivity," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    3. Maike A. F. dos Santos, 2019. "Mittag–Leffler Memory Kernel in Lévy Flights," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
    4. Yuri Luchko, 2017. "On Some New Properties of the Fundamental Solution to the Multi-Dimensional Space- and Time-Fractional Diffusion-Wave Equation," Mathematics, MDPI, vol. 5(4), pages 1-16, December.
    5. Francesco Mainardi & Armando Consiglio, 2020. "The Wright Functions of the Second Kind in Mathematical Physics," Mathematics, MDPI, vol. 8(6), pages 1-26, June.
    6. Ansari, Alireza & Derakhshan, Mohammad Hossein, 2023. "On spectral polar fractional Laplacian," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 636-663.
    7. Sun, HongGuang & Hao, Xiaoxiao & Zhang, Yong & Baleanu, Dumitru, 2017. "Relaxation and diffusion models with non-singular kernels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 590-596.
    8. Ram K. Saxena & Zivorad Tomovski & Trifce Sandev, 2015. "Analytical Solution of Generalized Space-Time Fractional Cable Equation," Mathematics, MDPI, vol. 3(2), pages 1-18, April.
    9. Yuri Luchko, 2019. "Some Schemata for Applications of the Integral Transforms of Mathematical Physics," Mathematics, MDPI, vol. 7(3), pages 1-18, March.
    10. Tawfik, Ashraf M. & Fichtner, Horst & Elhanbaly, A. & Schlickeiser, Reinhard, 2018. "Analytical solution of the space–time fractional hyperdiffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 178-187.
    11. Ervenila Musta Xhaferraj, 2022. "The New Integral Transform: E Transform\" and Its Applications"," European Journal of Formal Sciences and Engineering Articles, Revistia Research and Publishing, vol. 6, January -.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:5:p:415-:d:229697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.