IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i7p1052-d1367961.html
   My bibliography  Save this article

A Survey of Spatial Unit Roots

Author

Listed:
  • Badi H. Baltagi

    (Center for Policy Research and Department of Economics, Syracuse University, 426 Eggers Hall, Syracuse, NY 13244-1020, USA)

  • Junjie Shu

    (Department of Economics, Syracuse University, Syracuse, NY 13244-1020, USA)

Abstract

This paper conducts a brief survey of spatial unit roots within the context of spatial econometrics. We summarize important concepts and assumptions in this area and study the parameter space of the spatial autoregressive coefficient, which leads to the idea of spatial unit roots. Like the case in time series, the spatial unit roots lead to spurious regression because the system cannot achieve equilibrium. This phenomenon undermines the power of the usual Ordinary Least Squares (OLS) method, so various estimation methods such as Quasi-maximum Likelihood Estimate (QMLE), Two Stage Least Squares (2SLS), and Generalized Spatial Two Stage Least Squares (GS2SLS) are explored. This paper considers the assumptions needed to guarantee the identification and asymptotic properties of these methods. Because of the potential damage of spatial unit roots, we study some test procedures to detect them. Lastly, we offer insights into how to relax the compactness assumption to avoid spatial unit roots, as well as the relationship between spatial unit roots and other models, such as the Spatial Dynamic Panel Data (SDPD) model and Lévy–Brownian motion.

Suggested Citation

  • Badi H. Baltagi & Junjie Shu, 2024. "A Survey of Spatial Unit Roots," Mathematics, MDPI, vol. 12(7), pages 1-32, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:1052-:d:1367961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/7/1052/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/7/1052/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Martellosio, Federico, 2010. "Power Properties Of Invariant Tests For Spatial Autocorrelation In Linear Regression," Econometric Theory, Cambridge University Press, vol. 26(1), pages 152-186, February.
    3. Reinhold Kosfeld & Jorgen Lauridsen, 2009. "Dynamic spatial modelling of regional convergence processes," Studies in Empirical Economics, in: Giuseppe Arbia & Badi H. Baltagi (ed.), Spatial Econometrics, pages 245-261, Springer.
    4. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2008. "Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large," Journal of Econometrics, Elsevier, vol. 146(1), pages 118-134, September.
    5. Liu, Long, 2015. "A note on 2SLS estimation of the mixed regressive spatial autoregressive model," Economics Letters, Elsevier, vol. 134(C), pages 49-52.
    6. Peter C.B. Phillips, 1987. "Multiple Regression with Integrated Time Series," Cowles Foundation Discussion Papers 852, Cowles Foundation for Research in Economics, Yale University.
    7. Federico Martellosio, 2012. "Testing for Spatial Autocorrelation: The Regressors that Make the Power Disappear," Econometric Reviews, Taylor & Francis Journals, vol. 31(2), pages 215-240.
    8. Baran, Sándor & Pap, Gyula, 2009. "On the least squares estimator in a nearly unstable sequence of stationary spatial AR models," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 686-698, April.
    9. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    10. Lauridsen, J. & Kosfeld, R., 2004. "A wald Test for Spatial Nonstationarity," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 22, pages 1-12, Diciembre.
    11. Georges Bresson & Badi H. Baltagi & Alain Pirotte, 2007. "Panel unit root tests and spatial dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 339-360.
    12. Lung-Fei Lee & Chao Yang & Jihai Yu, 2023. "QML and Efficient GMM Estimation of Spatial Autoregressive Models with Dominant (Popular) Units," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 550-562, April.
    13. Gupta, Abhimanyu, 2023. "Efficient closed-form estimation of large spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 148-167.
    14. Baltagi, Badi H. & Song, Seuck Heun & Koh, Won, 2003. "Testing panel data regression models with spatial error correlation," Journal of Econometrics, Elsevier, vol. 117(1), pages 123-150, November.
    15. Baltagi, Badi H. & Yang, Zhenlin, 2013. "Heteroskedasticity and non-normality robust LM tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 43(5), pages 725-739.
    16. Baltagi, Badi H. & Liu, Long, 2008. "Testing for random effects and spatial lag dependence in panel data models," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3304-3306, December.
    17. Gupta, Abhimanyu, 2019. "Estimation Of Spatial Autoregressions With Stochastic Weight Matrices," Econometric Theory, Cambridge University Press, vol. 35(2), pages 417-463, April.
    18. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    19. Benjamin Born & Jörg Breitung, 2011. "Simple regression‐based tests for spatial dependence," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 330-342, July.
    20. Badi H. Baltagi & Zhenlin Yang, 2013. "Standardized LM tests for spatial error dependence in linear or panel regressions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 103-134, February.
    21. Paulauskas, Vygantas, 2007. "On unit roots for spatial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 209-226, January.
    22. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
    23. Kramer, Walter & Baltagi, Badi, 1996. "A general condition for an optimal limiting efficiency of OLS in the general linear regression model," Economics Letters, Elsevier, vol. 50(1), pages 13-17, January.
    24. Michael Beenstock & Daniel Felsenstein, 2019. "The Econometric Analysis of Non-Stationary Spatial Panel Data," Advances in Spatial Science, Springer, number 978-3-030-03614-0.
    25. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 252-277, April.
    26. Rossi, Francesca & Lieberman, Offer, 2023. "Spatial autoregressions with an extended parameter space and similarity-based weights," Journal of Econometrics, Elsevier, vol. 235(2), pages 1770-1798.
    27. Badi H. Baltagi, 2021. "Econometric Analysis of Panel Data," Springer Texts in Business and Economics, Springer, edition 6, number 978-3-030-53953-5, April.
    28. Yu, Jihai & Lee, Lung-fei, 2010. "Estimation Of Unit Root Spatial Dynamic Panel Data Models," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1332-1362, October.
    29. Baran, Sándor & Pap, Gyula & van Zuijlen, Martien C. A., 2004. "Asymptotic inference for a nearly unstable sequence of stationary spatial AR models," Statistics & Probability Letters, Elsevier, vol. 69(1), pages 53-61, August.
    30. Keller, Wolfgang & Shiue, Carol H., 2007. "The origin of spatial interaction," Journal of Econometrics, Elsevier, vol. 140(1), pages 304-332, September.
    31. Jørgen Lauridsen & Reinhold Kosfeld, 2007. "Spatial cointegration and heteroscedasticity," Journal of Geographical Systems, Springer, vol. 9(3), pages 253-265, September.
    32. Filiz Yesilyurt & J. Elhorst, 2014. "A regional analysis of inflation dynamics in Turkey," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(1), pages 1-17, January.
    33. Roknossadati, S.M. & Zarepour, M., 2010. "M-Estimation For A Spatial Unilateral Autoregressive Model With Infinite Variance Innovations," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1663-1682, December.
    34. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    35. Baran, Sándor & Pap, Gyula, 2012. "Parameter estimation in a spatial unilateral unit root autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 282-305.
    36. Bhattacharyya, B.B. & Khalil, T.M. & Richardson, G.D., 1996. "Gauss-Newton estimation of parameters for a spatial autoregression model," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 173-179, June.
    37. Lung-fei Lee & Jihai Yu, 2012. "QML Estimation of Spatial Dynamic Panel Data Models with Time Varying Spatial Weights Matrices," Spatial Economic Analysis, Taylor & Francis Journals, vol. 7(1), pages 31-74, March.
    38. Jørgen Lauridsen & Reinhold Kosfeld, 2006. "A test strategy for spurious spatial regression, spatial nonstationarity, and spatial cointegration," Papers in Regional Science, Wiley Blackwell, vol. 85(3), pages 363-377, August.
    39. Andrea Vaona, 2010. "Spatial autocorrelation and the sensitivity of RESET: a simulation study," Journal of Geographical Systems, Springer, vol. 12(1), pages 89-103, March.
    40. Lee, Lung-fei, 2007. "GMM and 2SLS estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 137(2), pages 489-514, April.
    41. Beenstock, Michael & Felsenstein, Daniel, 2015. "Estimating spatial spillover in housing construction with nonstationary panel data," Journal of Housing Economics, Elsevier, vol. 28(C), pages 42-58.
    42. Lung-fei Lee, 2003. "Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 307-335.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    2. Shew Fan Liu & Zhenlin Yang, 2015. "Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model," Econometrics, MDPI, vol. 3(2), pages 1-36, May.
    3. repec:asg:wpaper:1013 is not listed on IDEAS
    4. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    5. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2012. "Estimation for spatial dynamic panel data with fixed effects: The case of spatial cointegration," Journal of Econometrics, Elsevier, vol. 167(1), pages 16-37.
    6. Rossi, Francesca & Lieberman, Offer, 2023. "Spatial autoregressions with an extended parameter space and similarity-based weights," Journal of Econometrics, Elsevier, vol. 235(2), pages 1770-1798.
    7. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.
    8. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    9. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    10. Rossi, Francesca & Robinson, Peter M., 2023. "Higher-order least squares inference for spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 244-269.
    11. Francesca Rossi & Peter M. Robinson, 2020. "Higher-Order Least Squares Inference for Spatial Autoregressions," Working Papers 04/2020, University of Verona, Department of Economics.
    12. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    13. Zhenlin Yang & Liangjun Su, 2007. "Instrumental Variable Quantile Estimation of Spatial Autoregressive Models," Working Papers 05-2007, Singapore Management University, School of Economics.
    14. Badi H. Baltagi & Chihwa Kao & Long Liu, 2013. "The Estimation and Testing of a Linear Regression with Near Unit Root in the Spatial Autoregressive Error Term," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 241-270, September.
    15. Ming He & Kuan-Pin Lin, 2015. "Testing in a Random Effects Panel Data Model with Spatially Correlated Error Components and Spatially Lagged Dependent Variables," Econometrics, MDPI, vol. 3(4), pages 1-36, November.
    16. Yang, Zhenlin, 2015. "A general method for third-order bias and variance corrections on a nonlinear estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 178-200.
    17. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    18. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    19. Yang, Kai & Lee, Lung-fei, 2021. "Estimation of dynamic panel spatial vector autoregression: Stability and spatial multivariate cointegration," Journal of Econometrics, Elsevier, vol. 221(2), pages 337-367.
    20. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    21. Wang, Wei & Lee, Lung-fei, 2013. "Estimation of spatial panel data models with randomly missing data in the dependent variable," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 521-538.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:1052-:d:1367961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.