IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v41y2023i2p550-562.html
   My bibliography  Save this article

QML and Efficient GMM Estimation of Spatial Autoregressive Models with Dominant (Popular) Units

Author

Listed:
  • Lung-Fei Lee
  • Chao Yang
  • Jihai Yu

Abstract

This article investigates QML and GMM estimation of spatial autoregressive (SAR) models in which the column sums of the spatial weights matrix might not be uniformly bounded. We develop a central limit theorem in which the number of columns with unbounded sums can be finite or infinite and the magnitude of their column sums can be O(nδ) if δ

Suggested Citation

  • Lung-Fei Lee & Chao Yang & Jihai Yu, 2023. "QML and Efficient GMM Estimation of Spatial Autoregressive Models with Dominant (Popular) Units," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 550-562, April.
  • Handle: RePEc:taf:jnlbes:v:41:y:2023:i:2:p:550-562
    DOI: 10.1080/07350015.2022.2041424
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2022.2041424
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2022.2041424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badi H. Baltagi & Junjie Shu, 2024. "A Survey of Spatial Unit Roots," Mathematics, MDPI, vol. 12(7), pages 1-32, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:41:y:2023:i:2:p:550-562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.