IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i1p209-226.html
   My bibliography  Save this article

On unit roots for spatial autoregressive models

Author

Listed:
  • Paulauskas, Vygantas

Abstract

In this paper we consider the unit root problem for one rather simple autoregressive model Yt,s=aYt-1,s+bYt,s-1+[var epsilon]t,s on a two-dimensional lattice. We show that the growth of variance of Yt,s is essentially different from corresponding growth in the unit root case for AR(1) or AR(2) time series models. We also show that the dimension of the lattice plays an important role: the growth of variance of autoregressive field on a d-dimensional lattice is different for d=2,3 and d>=4.

Suggested Citation

  • Paulauskas, Vygantas, 2007. "On unit roots for spatial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 209-226, January.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:1:p:209-226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00119-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hannes Leeb & Benedikt Poetscher, 1999. "The variance of an integrated process need not diverge to infinity," Econometrics 9907001, University Library of Munich, Germany.
    2. Bhattacharyya, B. B. & Ren, J. -J. & Richardson, G. D. & Zhang, J., 2003. "Spatial autoregression model: strong consistency," Statistics & Probability Letters, Elsevier, vol. 65(2), pages 71-77, November.
    3. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    4. Leeb, Hannes & Pötscher, Benedikt M., 2001. "The Variance Of An Integrated Process Need Not Diverge To Infinity, And Related Results On Partial Sums Of Stationary Processes," Econometric Theory, Cambridge University Press, vol. 17(4), pages 671-685, August.
    5. Julian Besag & Debashis Mondal, 2005. "First-order intrinsic autoregressions and the de Wijs process," Biometrika, Biometrika Trust, vol. 92(4), pages 909-920, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baran, Sándor & Pap, Gyula, 2009. "On the least squares estimator in a nearly unstable sequence of stationary spatial AR models," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 686-698, April.
    2. Badi H. Baltagi & Junjie Shu, 2024. "A Survey of Spatial Unit Roots," Mathematics, MDPI, vol. 12(7), pages 1-32, March.
    3. Martellosio, Federico, 2011. "Efficiency of the OLS estimator in the vicinity of a spatial unit root," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1285-1291, August.
    4. Baran, Sándor & Pap, Gyula, 2012. "Parameter estimation in a spatial unilateral unit root autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 282-305.
    5. Martellosio, Federico, 2008. "Power Properties of Invariant Tests for Spatial Autocorrelation in Linear Regression," MPRA Paper 7255, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dietmar Bauer & Martin Wagner, 2002. "A Canonical Form for Unit Root Processes in the State Space Framework," Diskussionsschriften dp0204, Universitaet Bern, Departement Volkswirtschaft.
    2. Dietmar Bauer & Martin Wagner, 2003. "On Polynomial Cointegration in the State Space Framework," Diskussionsschriften dp0313, Universitaet Bern, Departement Volkswirtschaft.
    3. Prodosh Simlai, 2018. "Spatial Dependence, Idiosyncratic Risk, and the Valuation of Disaggregated Housing Data," The Journal of Real Estate Finance and Economics, Springer, vol. 57(2), pages 192-230, August.
    4. Massimiliano Agovino & Antonio Garofalo, 2013. "Dipendenza spaziale contemporanea e non contemporanea nei tassi di disoccupazione: un tentativo di analisi empirica dei dati provinciali italiani," RIVISTA DI ECONOMIA E STATISTICA DEL TERRITORIO, FrancoAngeli Editore, vol. 2013(3), pages 45-82.
    5. Kristie M. Engemann & Ruben Hernandez-Murillo & Michael T. Owyang, 2011. "Regional aggregation in forecasting: an application to the Federal Reserve’s Eighth District," Review, Federal Reserve Bank of St. Louis, vol. 93(May), pages 207-222.
    6. Duo Qin & Marie Anne Cagas & Geoffrey Ducanes & Nedelyn Magtibay-Ramos & Pilipinas F. Quising, 2006. "Measuring Regional Market Integration by Dynamic Factor Error Correction Model (DF-ECM) Approach - The Case of Developing Asia," Working Papers 565, Queen Mary University of London, School of Economics and Finance.
    7. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    8. Badi H. Baltagi, 2008. "Forecasting with panel data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 153-173.
    9. Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
    10. Patrick Doupe, 2014. "The Costs of Error in Setting Reference Rates for Reduced Deforestation," CCEP Working Papers 1415, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    11. Raffaella Giacomini, 2015. "Economic theory and forecasting: lessons from the literature," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 22-41, June.
    12. Youri Davydov & Vygantas Paulauskas, 2008. "On estimation of parameters for spatial autoregressive model," Statistical Inference for Stochastic Processes, Springer, vol. 11(3), pages 237-247, October.
    13. Paelinck, J. & Mur, J. & Trívez, J., 2004. "Econometría espacial: más luces que sombras," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 22, pages 1-19, Diciembre.
    14. Frédérick Demers & Annie De Champlain, 2005. "Forecasting Core Inflation in Canada: Should We Forecast the Aggregate or the Components?," Staff Working Papers 05-44, Bank of Canada.
    15. Percoco, Marco, 2015. "Temporal aggregation and spatio-temporal traffic modeling," Journal of Transport Geography, Elsevier, vol. 46(C), pages 244-247.
    16. Arnab Bhattacharjee & Sean Holly, 2011. "Structural interactions in spatial panels," Empirical Economics, Springer, vol. 40(1), pages 69-94, February.
    17. Caporin Massimiliano & Paruolo Paolo, 2005. "Spatial effects in multivariate ARCH," Economics and Quantitative Methods qf0501, Department of Economics, University of Insubria.
    18. Arnab Bhattacharjee & Sean Holly, 2013. "Understanding Interactions in Social Networks and Committees," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(1), pages 23-53, March.
    19. Girum Dagnachew Abate & Niels Haldrup, 2017. "Space-time modeling of electricity spot prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    20. Hendry, David F. & Hubrich, Kirstin, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:1:p:209-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.