IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v26y2010i01p152-186_09.html
   My bibliography  Save this article

Power Properties Of Invariant Tests For Spatial Autocorrelation In Linear Regression

Author

Listed:
  • Martellosio, Federico

Abstract

This paper derives some exact power properties of tests for spatial autocorrelation in the context of a linear regression model. In particular, we characterize the circumstances in which the power vanishes as the autocorrelation increases, thus extending the work of Krämer (2005). More generally, the analysis in the paper sheds new light on how the power of tests for spatial autocorrelation is affected by the matrix of regressors and by the spatial structure. We mainly focus on the problem of residual spatial autocorrelation, in which case it is appropriate to restrict attention to the class of invariant tests, but we also consider the case when the autocorrelation is due to the presence of a spatially lagged dependent variable among the regressors. A numerical study aimed at assessing the practical relevance of the theoretical results is included.

Suggested Citation

  • Martellosio, Federico, 2010. "Power Properties Of Invariant Tests For Spatial Autocorrelation In Linear Regression," Econometric Theory, Cambridge University Press, vol. 26(1), pages 152-186, February.
  • Handle: RePEc:cup:etheor:v:26:y:2010:i:01:p:152-186_09
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466609090641/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badi H. Baltagi & Chihwa Kao & Long Liu, 2013. "The Estimation and Testing of a Linear Regression with Near Unit Root in the Spatial Autoregressive Error Term," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 241-270, September.
    2. Preinerstorfer, David & Pötscher, Benedikt M., 2017. "On The Power Of Invariant Tests For Hypotheses On A Covariance Matrix," Econometric Theory, Cambridge University Press, vol. 33(1), pages 1-68, February.
    3. Christoph Strumann, 2019. "Hodges–Lehmann Estimation of Static Panel Models with Spatially Correlated Disturbances," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 141-168, January.
    4. David Preinerstorfer, 2018. "How to avoid the zero-power trap in testing for correlation," Papers 1812.10752, arXiv.org.
    5. Shew Fan Liu & Zhenlin Yang, 2015. "Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model," Econometrics, MDPI, vol. 3(2), pages 1-36, May.
    6. Mynbaev, Kairat, 2011. "Distributions escaping to infinity and the limiting power of the Cliff-Ord test for autocorrelation," MPRA Paper 44402, University Library of Munich, Germany, revised 18 Sep 2012.
    7. Giuseppe Arbia, 2011. "A Lustrum of SEA: Recent Research Trends Following the Creation of the Spatial Econometrics Association (2007--2011)," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(4), pages 377-395, July.
    8. Badi H. Baltagi & Junjie Shu, 2024. "A Survey of Spatial Unit Roots," Mathematics, MDPI, vol. 12(7), pages 1-31, March.
    9. Martellosio, Federico, 2011. "Efficiency of the OLS estimator in the vicinity of a spatial unit root," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1285-1291, August.
    10. Preinerstorfer, David & Pötscher, Benedikt M., 2016. "On Size And Power Of Heteroskedasticity And Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 32(2), pages 261-358, April.
    11. Jin, Fei & Lee, Lung-fei, 2012. "Approximated likelihood and root estimators for spatial interaction in spatial autoregressive models," Regional Science and Urban Economics, Elsevier, vol. 42(3), pages 446-458.
    12. Martellosio, Federico, 2008. "Testing for spatial autocorrelation: the regressors that make the power disappear," MPRA Paper 10542, University Library of Munich, Germany.
    13. Tony Smith & Ka Lee, 2012. "The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach," Journal of Geographical Systems, Springer, vol. 14(1), pages 91-124, January.
    14. Federico Martellosio & Grant Hillier, 2019. "Adjusted QMLE for the spatial autoregressive parameter," Papers 1909.08141, arXiv.org.
    15. Maxwell L. King & Sivagowry Sriananthakumar, 2015. "Point Optimal Testing: A Survey of the Post 1987 Literature," Monash Econometrics and Business Statistics Working Papers 5/15, Monash University, Department of Econometrics and Business Statistics.
    16. Francesco Giuseppe Caloia & Andrea Cipollini & Silvia Muzzioli, 2016. "A note on normalization schemes:The case of generalized forecast error variance decompositions," Department of Economics 0092, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    17. Martellosio, Federico & Hillier, Grant, 2020. "Adjusted QMLE for the spatial autoregressive parameter," Journal of Econometrics, Elsevier, vol. 219(2), pages 488-506.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:26:y:2010:i:01:p:152-186_09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.