IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i3p417-d1327746.html
   My bibliography  Save this article

Order Properties Concerning Tsallis Residual Entropy

Author

Listed:
  • Răzvan-Cornel Sfetcu

    (Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, 010014 Bucharest, Romania)

  • Vasile Preda

    (Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, 010014 Bucharest, Romania
    “Gheorghe Mihoc-Caius Iacob” Institute of Mathematical Statistics and Applied Mathematics, Calea 13 Septembrie 13, 050711 Bucharest, Romania
    “Costin C. Kiriţescu” National Institute of Economic Research, Calea 13 Septembrie 13, 050711 Bucharest, Romania)

Abstract

With the help of Tsallis residual entropy, we introduce Tsallis quantile entropy order between two random variables. We give necessary and sufficient conditions, study closure and reversed closure properties under parallel and series operations and show that this order is preserved in the proportional hazard rate model, proportional reversed hazard rate model, proportional odds model and record values model.

Suggested Citation

  • Răzvan-Cornel Sfetcu & Vasile Preda, 2024. "Order Properties Concerning Tsallis Residual Entropy," Mathematics, MDPI, vol. 12(3), pages 1-16, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:3:p:417-:d:1327746
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/3/417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/3/417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soares, Abner D. & Moura Jr., Newton J. & Ribeiro, Marcelo B., 2016. "Tsallis statistics in the income distribution of Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 158-171.
    2. Kaizoji, Taisei, 2006. "An interacting-agent model of financial markets from the viewpoint of nonextensive statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 109-113.
    3. Iulia-Elena Hirica & Cristina-Liliana Pripoae & Gabriel-Teodor Pripoae & Vasile Preda, 2022. "Lie Symmetries of the Nonlinear Fokker-Planck Equation Based on Weighted Kaniadakis Entropy," Mathematics, MDPI, vol. 10(15), pages 1-22, August.
    4. Vikas Kumar, 2017. "Characterization results based on dynamic Tsallis cumulative residual entropy," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(17), pages 8343-8354, September.
    5. Athanasios Sachlas & Takis Papaioannou, 2014. "Residual and Past Entropy in Actuarial Science and Survival Models," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 79-99, March.
    6. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
    7. Răzvan-Cornel Sfetcu & Sorina-Cezarina Sfetcu & Vasile Preda, 2021. "Ordering Awad–Varma Entropy and Applications to Some Stochastic Models," Mathematics, MDPI, vol. 9(3), pages 1-15, January.
    8. G. Rajesh & S. M. Sunoj, 2019. "Some properties of cumulative Tsallis entropy of order $$\alpha $$ α," Statistical Papers, Springer, vol. 60(3), pages 933-943, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Răzvan-Cornel Sfetcu & Vasile Preda, 2023. "Fractal Divergences of Generalized Jacobi Polynomials," Mathematics, MDPI, vol. 11(16), pages 1-12, August.
    2. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    3. Mohamed Said Mohamed, 2020. "On Cumulative Tsallis Entropy and Its Dynamic Past Version," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(4), pages 1903-1917, December.
    4. Cristina-Liliana Pripoae & Iulia-Elena Hirica & Gabriel-Teodor Pripoae & Vasile Preda, 2022. "Fisher-like Metrics Associated with ϕ -Deformed (Naudts) Entropies," Mathematics, MDPI, vol. 10(22), pages 1-26, November.
    5. Răzvan-Cornel Sfetcu & Sorina-Cezarina Sfetcu & Vasile Preda, 2021. "Ordering Awad–Varma Entropy and Applications to Some Stochastic Models," Mathematics, MDPI, vol. 9(3), pages 1-15, January.
    6. Aswathy S. Krishnan & S. M. Sunoj & P. G. Sankaran, 2019. "Quantile-based reliability aspects of cumulative Tsallis entropy in past lifetime," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 17-38, January.
    7. Jafar Ahmadi, 2021. "Characterization of continuous symmetric distributions using information measures of records," Statistical Papers, Springer, vol. 62(6), pages 2603-2626, December.
    8. Antonio Di Crescenzo & Patrizia Di Gironimo, 2018. "Stochastic Comparisons and Dynamic Information of Random Lifetimes in a Replacement Model," Mathematics, MDPI, vol. 6(10), pages 1-13, October.
    9. Ren, Fei & Gu, Gao-Feng & Zhou, Wei-Xing, 2009. "Scaling and memory in the return intervals of realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4787-4796.
    10. da Silva, Sérgio Luiz Eduardo Ferreira, 2021. "Newton’s cooling law in generalised statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    11. Klein, Ingo, 2017. "(Generalized) maximum cumulative direct, paired, and residual Φ entropy principle," FAU Discussion Papers in Economics 25/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    12. Asok K. Nanda & Shovan Chowdhury, 2021. "Shannon's Entropy and Its Generalisations Towards Statistical Inference in Last Seven Decades," International Statistical Review, International Statistical Institute, vol. 89(1), pages 167-185, April.
    13. Kumar, Vikas & Rekha,, 2018. "A quantile approach of Tsallis entropy for order statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 916-928.
    14. Martins, Adriel M.F. & Fernandes, Leonardo H.S. & Nascimento, Abraão D.C., 2023. "Scientific progress in information theory quantifiers," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    15. Mohamed S. Mohamed & Haroon M. Barakat & Salem A. Alyami & Mohamed A. Abd Elgawad, 2022. "Cumulative Residual Tsallis Entropy-Based Test of Uniformity and Some New Findings," Mathematics, MDPI, vol. 10(5), pages 1-14, February.
    16. Zhao, Pan & Pan, Jian & Yue, Qin & Zhang, Jinbo, 2021. "Pricing of financial derivatives based on the Tsallis statistical theory," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    17. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    18. Can Yilmaz Altinigne & Harun Ozkan & Veli Can Kupeli & Zehra Cataltepe, 2019. "An Empirical Study on Arrival Rates of Limit Orders and Order Cancellation Rates in Borsa Istanbul," Papers 1909.08308, arXiv.org.
    19. Du, Bian & Zhu, Hongliang & Zhao, Jingdong, 2016. "Optimal execution in high-frequency trading with Bayesian learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 767-777.
    20. Paulo L. dos Santos, 2017. "The Principle of Social Scaling," Complexity, Hindawi, vol. 2017, pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:3:p:417-:d:1327746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.