IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v503y2018icp916-928.html
   My bibliography  Save this article

A quantile approach of Tsallis entropy for order statistics

Author

Listed:
  • Kumar, Vikas
  • Rekha,

Abstract

The quantile-based entropy measures possess some unique properties than its distribution function approach. In this article, the concept of quantile based Tsallis entropy is extended for order statistics. We prove that the generalized quantile information between ith order statistics and parent random variable is distribution free. Also the quantile version of Tsallis entropy for residual lifetime has been derived and its monotonicity property is studied. Further some characterization results based on the Tsallis quantile entropy for residual and inactivity time for the series and parallel system have been studied.

Suggested Citation

  • Kumar, Vikas & Rekha,, 2018. "A quantile approach of Tsallis entropy for order statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 916-928.
  • Handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:916-928
    DOI: 10.1016/j.physa.2018.03.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118303443
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.03.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sunoj, S.M. & Sankaran, P.G., 2012. "Quantile based entropy function," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1049-1053.
    2. Sunoj, S.M. & Sankaran, P.G. & Nanda, Asok K., 2013. "Quantile based entropy function in past lifetime," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 366-372.
    3. Vikas Kumar, 2017. "Characterization results based on dynamic Tsallis cumulative residual entropy," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(17), pages 8343-8354, September.
    4. Kumar, Vikas, 2016. "Some results on Tsallis entropy measure and k-record values," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 667-673.
    5. Thapliyal, Richa & Taneja, H.C. & Kumar, Vikas, 2015. "Characterization results based on non-additive entropy of order statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 297-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tahmasebi, S. & Longobardi, M. & Kazemi, M.R. & Alizadeh, M., 2020. "Cumulative Tsallis entropy for maximum ranked set sampling with unequal samples," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    2. Ahmadi, J. & Fashandi, M., 2019. "Characterization of symmetric distributions based on some information measures properties of order statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 141-152.
    3. Borozan, Djula, 2019. "Unveiling the heterogeneous effect of energy taxes and income on residential energy consumption," Energy Policy, Elsevier, vol. 129(C), pages 13-22.
    4. Mao, Xuegeng & Shang, Pengjian & Wang, Jianing & Yin, Yi, 2020. "Fractional cumulative residual Kullback-Leibler information based on Tsallis entropy," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aswathy S. Krishnan & S. M. Sunoj & P. G. Sankaran, 2019. "Quantile-based reliability aspects of cumulative Tsallis entropy in past lifetime," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 17-38, January.
    2. Nanda, Asok K. & Sankaran, P.G. & Sunoj, S.M., 2014. "Rényi’s residual entropy: A quantile approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 114-121.
    3. Sankaran, P.G. & Sunoj, S.M. & Nair, N. Unnikrishnan, 2016. "Kullback–Leibler divergence: A quantile approach," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 72-79.
    4. Kayal, Suchandan, 2018. "Quantile-based cumulative inaccuracy measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 329-344.
    5. Vikas Kumar & Nirdesh Singh, 2023. "Some Results on Quantile Version of R é $\acute {e}$ nyi Entropy of Order Statistics," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 248-273, February.
    6. Jafar Ahmadi, 2021. "Characterization of continuous symmetric distributions using information measures of records," Statistical Papers, Springer, vol. 62(6), pages 2603-2626, December.
    7. Klein, Ingo, 2017. "(Generalized) maximum cumulative direct, paired, and residual Φ entropy principle," FAU Discussion Papers in Economics 25/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    8. Mohamed Said Mohamed, 2020. "On Cumulative Tsallis Entropy and Its Dynamic Past Version," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(4), pages 1903-1917, December.
    9. Capaldo, Marco & Di Crescenzo, Antonio & Pellerey, Franco, 2024. "Generalized Gini’s mean difference through distortions and copulas, and related minimizing problems," Statistics & Probability Letters, Elsevier, vol. 206(C).
    10. Kumar, Vikas, 2016. "Some results on Tsallis entropy measure and k-record values," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 667-673.
    11. Ahmadi, J. & Fashandi, M., 2019. "Characterization of symmetric distributions based on some information measures properties of order statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 141-152.
    12. Zhang, Fode & Ng, Hon Keung Tony & Shi, Yimin, 2018. "On alternative q-Weibull and q-extreme value distributions: Properties and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1171-1190.
    13. Sunoj, S.M. & Sankaran, P.G. & Nanda, Asok K., 2013. "Quantile based entropy function in past lifetime," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 366-372.
    14. Xia Han & Ruodu Wang & Xun Yu Zhou, 2022. "Choquet regularization for reinforcement learning," Papers 2208.08497, arXiv.org.
    15. Qiu, Guoxin, 2017. "The extropy of order statistics and record values," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 52-60.
    16. Tahmasebi, S. & Longobardi, M. & Kazemi, M.R. & Alizadeh, M., 2020. "Cumulative Tsallis entropy for maximum ranked set sampling with unequal samples," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    17. Xinjing Wang & Wenhao Gui, 2021. "Bayesian Estimation of Entropy for Burr Type XII Distribution under Progressive Type-II Censored Data," Mathematics, MDPI, vol. 9(4), pages 1-19, February.
    18. Balakrishnan, Narayanaswamy & Buono, Francesco & Longobardi, Maria, 2022. "A unified formulation of entropy and its application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    19. Calì, Camilla & Longobardi, Maria & Ahmadi, Jafar, 2017. "Some properties of cumulative Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 1012-1021.
    20. Sunoj, S.M. & Krishnan, Aswathy S. & Sankaran, P.G., 2018. "A quantile-based study of cumulative residual Tsallis entropy measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 410-421.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:916-928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.