IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i2p271-d1318960.html
   My bibliography  Save this article

Simulation of Heuristics for Automated Guided Vehicle Task Sequencing with Resource Sharing and Dynamic Queues

Author

Listed:
  • Jonas F. Leon

    (Department of Computer Science, Multimedia and Telecommunication, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
    Spindox España S.L., 08021 Barcelona, Spain)

  • Mohammad Peyman

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, 03801 Alcoy, Spain)

  • Xabier A. Martin

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, 03801 Alcoy, Spain)

  • Angel A. Juan

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, 03801 Alcoy, Spain)

Abstract

Automated guided vehicles (AGVs) stand out as a paradigmatic application of Industry 4.0, requiring the seamless integration of new concepts and technologies to enhance productivity while reducing labor costs, energy consumption, and emissions. In this context, specific industrial use cases can present a significant technological and scientific challenge. This study was inspired by a real industrial application for which the existing AGV literature did not contain an already well-studied solution. The problem is related to the sequencing of assigned tasks, where the queue formation dynamics and the resource sharing define the scheduling. The combinatorial nature of the problem requires the use of advanced mathematical tools such as heuristics, simulations, or a combination of both. A heuristic procedure was developed that generates candidate task sequences, which are, in turn, evaluated in a discrete-event simulation model developed in Simul8. This combined approach allows high-quality solutions to be generated and realistically evaluated, even graphically, by stakeholders and decision makers. A number of computational experiments were developed to validate the proposed method, which opens up some future lines of research, especially when considering stochastic settings.

Suggested Citation

  • Jonas F. Leon & Mohammad Peyman & Xabier A. Martin & Angel A. Juan, 2024. "Simulation of Heuristics for Automated Guided Vehicle Task Sequencing with Resource Sharing and Dynamic Queues," Mathematics, MDPI, vol. 12(2), pages 1-19, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:271-:d:1318960
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/2/271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/2/271/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonas F. Leon & Yuda Li & Mohammad Peyman & Laura Calvet & Angel A. Juan, 2023. "A Discrete-Event Simheuristic for Solving a Realistic Storage Location Assignment Problem," Mathematics, MDPI, vol. 11(7), pages 1-24, March.
    2. Karlijn Fransen & Joost van Eekelen, 2023. "Efficient path planning for automated guided vehicles using A* (Astar) algorithm incorporating turning costs in search heuristic," International Journal of Production Research, Taylor & Francis Journals, vol. 61(3), pages 707-725, February.
    3. Kap Hwan Kim & Jong Wook Bae, 2004. "A Look-Ahead Dispatching Method for Automated Guided Vehicles in Automated Port Container Terminals," Transportation Science, INFORMS, vol. 38(2), pages 224-234, May.
    4. Vis, Iris F.A., 2006. "Survey of research in the design and control of automated guided vehicle systems," European Journal of Operational Research, Elsevier, vol. 170(3), pages 677-709, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Transport operations in container terminals: Literature overview, trends, research directions and classification scheme," European Journal of Operational Research, Elsevier, vol. 236(1), pages 1-13.
    2. Caroline Lloyd & Jonathan Payne, 2021. "Fewer jobs, better jobs? An international comparative study of robots and ‘routine’ work in the public sector," Industrial Relations Journal, Wiley Blackwell, vol. 52(2), pages 109-124, March.
    3. Dalila B. M. M. Fontes & Seyed Mahdi Homayouni, 2019. "Joint production and transportation scheduling in flexible manufacturing systems," Journal of Global Optimization, Springer, vol. 74(4), pages 879-908, August.
    4. Fotuhi, Fateme & Huynh, Nathan & Vidal, Jose M. & Xie, Yuanchang, 2013. "Modeling yard crane operators as reinforcement learning agents," Research in Transportation Economics, Elsevier, vol. 42(1), pages 3-12.
    5. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    6. Henry Lau & Ying Zhao, 2008. "Integrated scheduling of handling equipment at automated container terminals," Annals of Operations Research, Springer, vol. 159(1), pages 373-394, March.
    7. Vis, Iris F.A., 2006. "Survey of research in the design and control of automated guided vehicle systems," European Journal of Operational Research, Elsevier, vol. 170(3), pages 677-709, May.
    8. Lijun Yue & Houming Fan & Chunxin Zhai, 2019. "Joint Configuration and Scheduling Optimization of a Dual-Trolley Quay Crane and Automatic Guided Vehicles with Consideration of Vessel Stability," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
    9. Kishore Bhoopalam, A. & van den Berg, R. & Agatz, N.A.H. & Chorus, C.G., 2021. "The long road to automated trucking: Insights from driver focus groups," ERIM Report Series Research in Management ERS-2021-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Asef-Vaziri, Ardavan & Kazemi, Morteza & Eshghi, Kourosh & Lahmar, Maher, 2010. "An ant colony system for enhanced loop-based aisle-network design," European Journal of Operational Research, Elsevier, vol. 207(1), pages 110-120, November.
    11. Emde, Simon & Tahirov, Nail & Gendreau, Michel & Glock, Christoph H., 2021. "Routing automated lane-guided transport vehicles in a warehouse handling returns," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1085-1098.
    12. John Lees-Miller, 2016. "Minimising average passenger waiting time in personal rapid transit systems," Annals of Operations Research, Springer, vol. 236(2), pages 405-424, January.
    13. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2022. "Rack retrieval and repositioning optimization problem in robotic mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    14. repec:zib:zbjtin:v:1:y:2021:i:2:p:54-57 is not listed on IDEAS
    15. Mengyue Zhai & Zheng Wang, 2024. "Optimizing Rack Locations in the Mobile-Rack Picking System: A Method of Integrating Rack Heat and Relevance," Mathematics, MDPI, vol. 12(3), pages 1-20, January.
    16. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    17. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    18. Jenny Nossack & Dirk Briskorn & Erwin Pesch, 2018. "Container Dispatching and Conflict-Free Yard Crane Routing in an Automated Container Terminal," Transportation Science, INFORMS, vol. 52(5), pages 1059-1076, October.
    19. Boccia, Maurizio & Masone, Adriano & Sterle, Claudio & Murino, Teresa, 2023. "The parallel AGV scheduling problem with battery constraints: A new formulation and a matheuristic approach," European Journal of Operational Research, Elsevier, vol. 307(2), pages 590-603.
    20. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    21. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:271-:d:1318960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.