IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v53y2023i4p266-282.html
   My bibliography  Save this article

Algorithm for Robotic Picking in Amazon Fulfillment Centers Enables Humans and Robots to Work Together Effectively

Author

Listed:
  • Russell Allgor

    (Amazon.com, Seattle, Washington 98109)

  • Tolga Cezik

    (Amazon.com, Seattle, Washington 98109)

  • Daniel Chen

    (Amazon.com, Seattle, Washington 98109)

Abstract

This paper describes how Amazon redesigned the robotic picking algorithm used in Amazon Robotics (AR) fulfillment centers (FCs) to enable humans and robots to work together effectively. In AR FCs, robotic drives fetch storage pods filled with inventory for associates to pick. The picking algorithm needs to decide which specific units of inventory on which pods should be picked to fulfill customer order shipments. We want to do so in a way that is most efficient and distance traveled by drives per unit picked is the key performance metric. This new algorithm reduced the distance traveled by drives per unit picked by 62% without negative operational impact and has since been implemented in all AR FCs. This improvement reduced the number of drives required in AR FCs by 31%, which amounted to half a billion dollars in savings. The redesigned algorithm enabled seamless collaboration between associates and robots, and its effectiveness in scaling up convinced Amazon to make AR FCs the standard for new FCs, allowing Amazon to reduce the storage footprint by about 29% compared with non-AR FCs.

Suggested Citation

  • Russell Allgor & Tolga Cezik & Daniel Chen, 2023. "Algorithm for Robotic Picking in Amazon Fulfillment Centers Enables Humans and Robots to Work Together Effectively," Interfaces, INFORMS, vol. 53(4), pages 266-282, July.
  • Handle: RePEc:inm:orinte:v:53:y:2023:i:4:p:266-282
    DOI: 10.1287/inte.2022.1143
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2022.1143
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2022.1143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Merschformann, M. & Lamballais, T. & de Koster, M.B.M. & Suhl, L., 2019. "Decision rules for robotic mobile fulfillment systems," Operations Research Perspectives, Elsevier, vol. 6(C).
    2. Jérémie Gallien & Théophane Weber, 2010. "To Wave or Not to Wave? Order Release Policies for Warehouses with an Automated Sorter," Manufacturing & Service Operations Management, INFORMS, vol. 12(4), pages 642-662, September.
    3. Rong Yuan & Tolga Cezik & Stephen C. Graves, 2018. "Stowage decisions in multi-zone storage systems," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 333-343, January.
    4. Felix Weidinger & Nils Boysen & Dirk Briskorn, 2018. "Storage Assignment with Rack-Moving Mobile Robots in KIVA Warehouses," Service Science, INFORMS, vol. 52(6), pages 1479-1495, December.
    5. Hengle Qin & Jun Xiao & Dongdong Ge & Linwei Xin & Jianjun Gao & Simai He & Haodong Hu & John Gunnar Carlsson, 2022. "JD.com: Operations Research Algorithms Drive Intelligent Warehouse Robots to Work," Interfaces, INFORMS, vol. 52(1), pages 42-55, January.
    6. Boysen, Nils & Briskorn, Dirk & Emde, Simon, 2017. "Parts-to-picker based order processing in a rack-moving mobile robots environment," European Journal of Operational Research, Elsevier, vol. 262(2), pages 550-562.
    7. Bipan Zou & Yeming (Yale) Gong & Xianhao Xu & Zhe Yuan, 2017. "Assignment rules in robotic mobile fulfilment systems for online retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6175-6192, October.
    8. Lamballais, T. & Roy, D. & De Koster, M.B.M., 2017. "Estimating performance in a Robotic Mobile Fulfillment System," European Journal of Operational Research, Elsevier, vol. 256(3), pages 976-990.
    9. Rong Yuan & Stephen C. Graves & Tolga Cezik, 2019. "Velocity‐Based Storage Assignment in Semi‐Automated Storage Systems," Production and Operations Management, Production and Operations Management Society, vol. 28(2), pages 354-373, February.
    10. Vis, Iris F.A., 2006. "Survey of research in the design and control of automated guided vehicle systems," European Journal of Operational Research, Elsevier, vol. 170(3), pages 677-709, May.
    11. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    12. Bipan Zou & Yeming Gong & Xianhao Xu & Zhe Yuan, 2017. "Assignment rules in robotic mobile fulfilment systems for online retailers," Post-Print hal-02312005, HAL.
    13. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    14. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    15. Weidinger, Felix & Boysen, Nils & Briskorn, Dirk, 2018. "Storage Assignment with Rack-Moving Mobile Robots in KIVA Warehouses," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126190, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    16. Boysen, Nils & Briskorn, Dirk & Emde, Simon, 2017. "Parts-to-picker based order processing in a rack-moving mobile robots environment," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 85774, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    17. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    18. Roodbergen, Kees Jan & Vis, Iris F.A., 2009. "A survey of literature on automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 194(2), pages 343-362, April.
    19. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126185, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vichitkunakorn, Panupong & Emde, Simon & Masae, Makusee & Glock, Christoph H. & Grosse, Eric H., 2024. "Locating charging stations and routing drones for efficient automated stocktaking," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1129-1145.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2022. "Rack retrieval and repositioning optimization problem in robotic mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    2. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    3. Zhuang, Yanling & Zhou, Yun & Yuan, Yufei & Hu, Xiangpei & Hassini, Elkafi, 2022. "Order picking optimization with rack-moving mobile robots and multiple workstations," European Journal of Operational Research, Elsevier, vol. 300(2), pages 527-544.
    4. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2024. "Improving order picking efficiency through storage assignment optimization in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 316(2), pages 718-732.
    5. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    6. Bingqian WANG & Xiuqing YANG & Mingyao QI, 2023. "Order and rack sequencing in a robotic mobile fulfillment system with multiple picking stations," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 509-547, June.
    7. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    8. Ding, Tianrong & Zhang, Yuankai & Wang, Zheng & Hu, Xiangpei, 2024. "Velocity-based rack storage location assignment for the unidirectional robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    9. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    10. Lamballais, T. & Merschformann, M. & Roy, D. & de Koster, M.B.M. & Azadeh, K. & Suhl, L., 2022. "Dynamic policies for resource reallocation in a robotic mobile fulfillment system with time-varying demand," European Journal of Operational Research, Elsevier, vol. 300(3), pages 937-952.
    11. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    13. Xu, Xianhao & Chen, Yuerong & Zou, Bipan & Gong, Yeming, 2022. "Assignment of parcels to loading stations in robotic sorting systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    14. Justkowiak, Jan-Erik & Pesch, Erwin, 2023. "Stronger mixed-integer programming-formulations for order- and rack-sequencing in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1063-1078.
    15. Xie, Lin & Thieme, Nils & Krenzler, Ruslan & Li, Hanyi, 2021. "Introducing split orders and optimizing operational policies in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 288(1), pages 80-97.
    16. Boysen, Nils & Schwerdfeger, Stefan & W. Ulmer, Marlin, 2023. "Robotized sorting systems: Large-scale scheduling under real-time conditions with limited lookahead," European Journal of Operational Research, Elsevier, vol. 310(2), pages 582-596.
    17. Justkowiak, Jan-Erik & Pesch, Erwin, 2023. "A column generation driven heuristic for order-scheduling and rack-sequencing in robotic mobile fulfillment systems," Omega, Elsevier, vol. 120(C).
    18. Xie, Lin & Li, Hanyi & Luttmann, Laurin, 2023. "Formulating and solving integrated order batching and routing in multi-depot AGV-assisted mixed-shelves warehouses," European Journal of Operational Research, Elsevier, vol. 307(2), pages 713-730.
    19. Lu Zhen & Jingwen Wu & Haolin Li & Zheyi Tan & Yingying Yuan, 2023. "Scheduling multiple types of equipment in an automated warehouse," Annals of Operations Research, Springer, vol. 322(2), pages 1119-1141, March.
    20. Onal, Sevilay & Zhu, Wen & Das, Sanchoy, 2023. "Order picking heuristics for online order fulfillment warehouses with explosive storage," International Journal of Production Economics, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:53:y:2023:i:4:p:266-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.