IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v61y2023i3p707-725.html
   My bibliography  Save this article

Efficient path planning for automated guided vehicles using A* (Astar) algorithm incorporating turning costs in search heuristic

Author

Listed:
  • Karlijn Fransen
  • Joost van Eekelen

Abstract

The path planned for an automated guided vehicle in, for example, a production facility is often the lowest-cost path in a (weighted) geometric graph. The weights in the graph may represent a distance or travel time. Sometimes turning costs are taken into account; turns (and decelerations before and accelerations after turning) take time, so it is desirable to minimise turns in the path. Several well-known algorithms can be used to find the lowest-cost path in a geometric graph. In this paper, we focus on the A $ ^* $ ∗ algorithm, which uses an (internal) search heuristic to find the lowest-cost path. In the current literature, generally, either turning costs are not taken into account in the heuristic or the heuristic can only be used for specific graph structures. We propose an improved heuristic for the A $ ^* $ ∗ algorithm that can be used to find the lowest-cost path in a geometric graph with turning costs. Our heuristic is proven to be monotone and admissible. Moreover, our heuristic provides a higher lower bound estimate for the actual costs compared to other heuristics found in the literature, causing the lowest-cost path to be found faster (i.e. with less iterations). We validate this through an extensive comparative study.

Suggested Citation

  • Karlijn Fransen & Joost van Eekelen, 2023. "Efficient path planning for automated guided vehicles using A* (Astar) algorithm incorporating turning costs in search heuristic," International Journal of Production Research, Taylor & Francis Journals, vol. 61(3), pages 707-725, February.
  • Handle: RePEc:taf:tprsxx:v:61:y:2023:i:3:p:707-725
    DOI: 10.1080/00207543.2021.2015806
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2021.2015806
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2021.2015806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonas F. Leon & Mohammad Peyman & Xabier A. Martin & Angel A. Juan, 2024. "Simulation of Heuristics for Automated Guided Vehicle Task Sequencing with Resource Sharing and Dynamic Queues," Mathematics, MDPI, vol. 12(2), pages 1-19, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:61:y:2023:i:3:p:707-725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.