IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p24-d299402.html
   My bibliography  Save this article

Joint Configuration and Scheduling Optimization of a Dual-Trolley Quay Crane and Automatic Guided Vehicles with Consideration of Vessel Stability

Author

Listed:
  • Lijun Yue

    (Department of Transportation engineering, Dalian Maritime University, Dalian 116026, China)

  • Houming Fan

    (Department of Transportation engineering, Dalian Maritime University, Dalian 116026, China)

  • Chunxin Zhai

    (Department of Transportation engineering, Dalian Maritime University, Dalian 116026, China)

Abstract

This study proposes a formulation to optimize operational efficiency of a dual-trolley quay crane and automatic guided vehicles (AGVs) to reduce energy consumption at an automated container terminal. A two-phase model is used to minimize energy consumption during loading and discharging operations, as well as maximize the utilization rate of the AGVs, with consideration of relevant constraints such as the capacity of buffers for the quay crane (QC) and yard, the stability of vessel, the maximum endurance of an AGV, and the available laytime for handling. We propose a constrained partial enumeration strategy to construct quay crane schedules and a genetic algorithm to solve the AGV scheduling problem. Finally, Yangshan Phase IV automated container terminal’s data is used to verify the validity and applicability of the proposed model. The results of the tests provide evidence that the proposed method can improve energy efficiency.

Suggested Citation

  • Lijun Yue & Houming Fan & Chunxin Zhai, 2019. "Joint Configuration and Scheduling Optimization of a Dual-Trolley Quay Crane and Automatic Guided Vehicles with Consideration of Vessel Stability," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:24-:d:299402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/24/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/24/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kap Hwan Kim & Jong Wook Bae, 2004. "A Look-Ahead Dispatching Method for Automated Guided Vehicles in Automated Port Container Terminals," Transportation Science, INFORMS, vol. 38(2), pages 224-234, May.
    2. Yun Peng & Wenyuan Wang & Ke Liu & Xiangda Li & Qi Tian, 2018. "The Impact of the Allocation of Facilities on Reducing Carbon Emissions from a Green Container Terminal Perspective," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    3. Noura Al-Dhaheri & Ali Diabat, 2017. "A Lagrangian relaxation-based heuristic for the multi-ship quay crane scheduling problem with ship stability constraints," Annals of Operations Research, Springer, vol. 248(1), pages 1-24, January.
    4. Lee, Der-Horng & Wang, Hui Qiu & Miao, Lixin, 2008. "Quay crane scheduling with non-interference constraints in port container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(1), pages 124-135, January.
    5. Kim, Kap Hwan & Park, Young-Man, 2004. "A crane scheduling method for port container terminals," European Journal of Operational Research, Elsevier, vol. 156(3), pages 752-768, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka A. Tubis & Honorata Poturaj, 2022. "Risk Related to AGV Systems—Open-Access Literature Review," Energies, MDPI, vol. 15(23), pages 1-23, November.
    2. Hang Yu & Yiyun Deng & Leijie Zhang & Xin Xiao & Caimao Tan, 2022. "Yard Operations and Management in Automated Container Terminals: A Review," Sustainability, MDPI, vol. 14(6), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Defeng & Tang, Lixin & Baldacci, Roberto & Lim, Andrew, 2021. "An exact algorithm for the unidirectional quay crane scheduling problem with vessel stability," European Journal of Operational Research, Elsevier, vol. 291(1), pages 271-283.
    2. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    3. Kaveshgar, Narges & Huynh, Nathan, 2015. "Integrated quay crane and yard truck scheduling for unloading inbound containers," International Journal of Production Economics, Elsevier, vol. 159(C), pages 168-177.
    4. Xin Jia Jiang & Yanhua Xu & Chenhao Zhou & Ek Peng Chew & Loo Hay Lee, 2018. "Frame Trolley Dispatching Algorithm for the Frame Bridge Based Automated Container Terminal," Transportation Science, INFORMS, vol. 52(3), pages 722-737, June.
    5. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    6. Henry Lau & Ying Zhao, 2008. "Integrated scheduling of handling equipment at automated container terminals," Annals of Operations Research, Springer, vol. 159(1), pages 373-394, March.
    7. Cheng Hong & Yufang Guo & Yuhong Wang & Tingting Li, 2023. "The Integrated Scheduling Optimization for Container Handling by Using Driverless Electric Truck in Automated Container Terminal," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    8. Wu, Lingxiao & Ma, Weimin, 2017. "Quay crane scheduling with draft and trim constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 38-68.
    9. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    10. Kong, Lingrui & Ji, Mingjun & Gao, Zhendi, 2022. "An exact algorithm for scheduling tandem quay crane operations in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    11. Evrim Ursavas, 2017. "Crane allocation with stability considerations," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 379-401, June.
    12. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    13. Hoai Le & Adnan Yassine & Riadh Moussi, 2012. "DCA for solving the scheduling of lifting vehicle in an automated port container terminal," Computational Management Science, Springer, vol. 9(2), pages 273-286, May.
    14. Abou Kasm, Omar & Diabat, Ali & Chow, Joseph Y.J., 2023. "Simultaneous operation of next-generation and traditional quay cranes at container terminals," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1110-1125.
    15. Tang, Lixin & Zhao, Jiao & Liu, Jiyin, 2014. "Modeling and solution of the joint quay crane and truck scheduling problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 978-990.
    16. Canrong Zhang & Tao Wu & Mingyao Qi & Lixin Miao, 2018. "Simultaneous Allocation of Berths and Quay Cranes under Discrete Berth Situation," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(03), pages 1-28, June.
    17. Yongpei Guan & Kang-Hung Yang & Zhili Zhou, 2013. "The crane scheduling problem: models and solution approaches," Annals of Operations Research, Springer, vol. 203(1), pages 119-139, March.
    18. Gharehgozli, Amir Hossein & Vernooij, Floris Gerardus & Zaerpour, Nima, 2017. "A simulation study of the performance of twin automated stacking cranes at a seaport container terminal," European Journal of Operational Research, Elsevier, vol. 261(1), pages 108-128.
    19. Zhang, Xiaoju & Zeng, Qingcheng & Yang, Zhongzhen, 2016. "Modeling the mixed storage strategy for quay crane double cycling in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 171-187.
    20. Shucheng Yu & Shuaian Wang & Lu Zhen, 2017. "Quay crane scheduling problem with considering tidal impact and fuel consumption," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 345-368, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:24-:d:299402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.