IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v125y2015i4p1218-1243.html
   My bibliography  Save this article

A Rademacher–Menchov approach for random coefficient bifurcating autoregressive processes

Author

Listed:
  • Bercu, Bernard
  • Blandin, Vassili

Abstract

We investigate the asymptotic behavior of the least squares estimator of the unknown parameters of random coefficient bifurcating autoregressive processes. Under suitable assumptions on inherited and environmental effects, we establish the almost sure convergence of our estimates. In addition, we also prove a quadratic strong law and central limit theorems. Our approach mainly relies on asymptotic results for vector-valued martingales together with the well-known Rademacher–Menchov theorem.

Suggested Citation

  • Bercu, Bernard & Blandin, Vassili, 2015. "A Rademacher–Menchov approach for random coefficient bifurcating autoregressive processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1218-1243.
  • Handle: RePEc:eee:spapps:v:125:y:2015:i:4:p:1218-1243
    DOI: 10.1016/j.spa.2014.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414914002464
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2014.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Zhou & I. V. Basawa, 2005. "Maximum Likelihood Estimation for a First‐Order Bifurcating Autoregressive Process with Exponential Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 825-842, November.
    2. István Berkes & Lajos Horváth & Shiqing Ling, 2009. "Estimation in nonstationary random coefficient autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(4), pages 395-416, July.
    3. Alexander Aue & Lajos Horváth & Josef Steinebach, 2006. "Estimation in Random Coefficient Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(1), pages 61-76, January.
    4. de Saporta, Benoîte & Gégout-Petit, Anne & Marsalle, Laurence, 2014. "Statistical study of asymmetry in cell lineage data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 15-39.
    5. de Saporta, Benoîte & Gégout-Petit, Anne & Marsalle, Laurence, 2012. "Asymmetry tests for bifurcating auto-regressive processes with missing data," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1439-1444.
    6. Zhou, J. & Basawa, I.V., 2005. "Least-squares estimation for bifurcating autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 77-88, August.
    7. Nicholls, D. F. & Quinn, B. G., 1981. "The estimation of multivariate random coefficient autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 11(4), pages 544-555, December.
    8. Delmas, Jean-François & Marsalle, Laurence, 2010. "Detection of cellular aging in a Galton-Watson process," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2495-2519, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Valère Bitseki Penda & Adélaïde Olivier, 2017. "Autoregressive functions estimation in nonlinear bifurcating autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 179-210, July.
    2. Bitseki Penda, S. Valère & Olivier, Adélaïde, 2018. "Moderate deviation principle in nonlinear bifurcating autoregressive models," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 20-26.
    3. Vincent Bansaye & S. Valère Bitseki Penda, 2021. "A Phase Transition for Large Values of Bifurcating Autoregressive Models," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2081-2116, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernard Bercu & Vassili Blandin, 2015. "Limit theorems for bifurcating integer-valued autoregressive processes," Statistical Inference for Stochastic Processes, Springer, vol. 18(1), pages 33-67, April.
    2. Vincent Bansaye & S. Valère Bitseki Penda, 2021. "A Phase Transition for Large Values of Bifurcating Autoregressive Models," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2081-2116, December.
    3. de Saporta, Benoîte & Gégout-Petit, Anne & Marsalle, Laurence, 2014. "Statistical study of asymmetry in cell lineage data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 15-39.
    4. S. Valère Bitseki Penda & Adélaïde Olivier, 2017. "Autoregressive functions estimation in nonlinear bifurcating autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 179-210, July.
    5. Proïa, Frédéric & Soltane, Marius, 2021. "Comments on the presence of serial correlation in the random coefficients of an autoregressive process," Statistics & Probability Letters, Elsevier, vol. 170(C).
    6. Lorenzo Trapani, 2021. "Testing for strict stationarity in a random coefficient autoregressive model," Econometric Reviews, Taylor & Francis Journals, vol. 40(3), pages 220-256, April.
    7. Zhang, Chenhua, 2011. "Parameter estimation for first-order bifurcating autoregressive processes with Weibull innovations," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1961-1969.
    8. István Berkes & Lajos Horváth & Shiqing Ling, 2009. "Estimation in nonstationary random coefficient autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(4), pages 395-416, July.
    9. Hwang, S.Y. & Basawa, I.V., 2009. "Branching Markov processes and related asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1155-1167, July.
    10. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2019. "Random coefficient continuous systems: Testing for extreme sample path behavior," Journal of Econometrics, Elsevier, vol. 209(2), pages 208-237.
    11. Abdelhakim Aknouche, 2015. "Quadratic random coefficient autoregression with linear-in-parameters volatility," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 99-125, July.
    12. Mohammed Benmoumen & Imane Salhi, 2023. "The Strong Consistency of Quasi-Maximum Likelihood Estimators for p-order Random Coefficient Autoregressive (RCA) Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 617-632, February.
    13. Mao, Mingzhi, 2014. "The asymptotic behaviors for least square estimation of multi-casting autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 110-124.
    14. Horváth, Lajos & Trapani, Lorenzo, 2019. "Testing for randomness in a random coefficient autoregression model," Journal of Econometrics, Elsevier, vol. 209(2), pages 338-352.
    15. Aknouche, Abdelhakim, 2015. "Unified quasi-maximum likelihood estimation theory for stable and unstable Markov bilinear processes," MPRA Paper 69572, University Library of Munich, Germany.
    16. Nielsen, Heino Bohn & Rahbek, Anders, 2014. "Unit root vector autoregression with volatility induced stationarity," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 144-167.
    17. Horváth, Lajos & Trapani, Lorenzo, 2016. "Statistical inference in a random coefficient panel model," Journal of Econometrics, Elsevier, vol. 193(1), pages 54-75.
    18. Trapani, Lorenzo, 2021. "A test for strict stationarity in a random coefficient autoregressive model of order 1," Statistics & Probability Letters, Elsevier, vol. 177(C).
    19. Daisuke Nagakura, 2009. "Inconsistency of a Unit Root Test against Stochastic Unit Root Processes," IMES Discussion Paper Series 09-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    20. Nagakura, Daisuke, 2009. "Asymptotic theory for explosive random coefficient autoregressive models and inconsistency of a unit root test against a stochastic unit root process," Statistics & Probability Letters, Elsevier, vol. 79(24), pages 2476-2483, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:125:y:2015:i:4:p:1218-1243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.